Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 789-796    DOI: 10.11902/1005.4537.2023.181
Current Issue | Archive | Adv Search |
Corrosion Resistance of 2205 Stainless Steel Bar in Modified Coral Concretes
FENG Xingguo1, GU Zhuoran1, FAN Qiqi1, LU Xiangyu1(), YANG Yashi2
1. College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210024, China
2. School of Hydraulic Engineering, Wanjiang University of Technology, Maanshan 243000, China
Cite this article: 

FENG Xingguo, GU Zhuoran, FAN Qiqi, LU Xiangyu, YANG Yashi. Corrosion Resistance of 2205 Stainless Steel Bar in Modified Coral Concretes. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 789-796.

Download:  HTML  PDF(5121KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of different modification schemes for strengthening the coral coarse aggregate, namely direct incorporation of fly ash, cement slurry or cement-metakaolin composite slurry, on the corrosion rate of 2205 stainless steel bars in the coral concretes was comparatively assessed so that to search insight the way to improve the durability of stainless steel reinforced coral concrete structure. The results show that the 2205 stainless steel bar always maintained a passivation state in the coral concrete. The incorporation of fly ash can reduce the corrosion rate of 2205 stainless steel bar, but the direct addition of fly ash may significantly decrease the strength of coral concrete. With P.O 52.5 cement slurry or P.O 52.5 cement-metakaolin composite slurry as modifier can strengthen coral coarse aggregate, but the strength of coral concrete prepared with the modified crude aggregate has little difference with that of the control group, while the corrosion rate of 2205 stainless steel bar in the coral concrete strengthened with the coarse aggregate is significantly reduced. Among others, the corrosion rate of 2205 stainless steel bar is the lowest in the concrete of coarse aggregate reinforced with P.O 52.5 cement-metakaolin composite slurry In conclusion, using P.O 52.5 cement-metakaolin composite slurry to enhance coral coarse aggregate can effectively improve the durability of stainless steel reinforced coral concrete structures by providing high strength and greatly reducing the corrosion rate of 2205 stainless steel bar.

Key words:  coral concrete      stainless steel bar      fly ash      strengthened coarse aggregate      corrosion rate     
Received:  30 May 2023      32134.14.1005.4537.2023.181
ZTFLH:  TU511  
Fund: National Key R&D Program of China(2022YFB3207400);Research Funds for the central Universities(TKS20220601)
Corresponding Authors:  LU Xiangyu, E-mail: luxiangyu@hhu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.181     OR     https://www.jcscp.org/EN/Y2024/V44/I3/789

Fig.1  Photo of the stainless steel reinforced coral concrete samples
Fig.2  Compressive strengths of the coral concretes modified by using FA (a) and cement or cement-metakaolin slurry (b)
Fig.3  Open circuit potentials of 2205 stainless steel reinforcement in modified coral concretes by using FA (a) and cement or cement-metakaolin slurry (b)
Fig.4  Rp values of 2205 stainless steel reinforcement in modified coral concretes by using FA (a) and cement or cement- metakaolin slurry (b)
Fig.5  Icorrvalues of 2205 stainless steel reinforcement in modified coral concretes by using FA (a) and cement or cement- metakaolin slurry (b), comparison of Icorr values in two types of modified coral concretes (c)
Fig.6  Nyquist plots of 2205 stainless steel reinforcement of FA modified coral concretes after immersion in 3.5%NaCl solution for 10 d (a), 180 d (b), 360 d (c) and 880 d (d)
Fig.7  Nyquist plots of 2205 stainless steel reinforcement of the coral concretes modified by using cement or cement- metakaolin slurry after immersion in 3.5%NaCl solution for 10 d (a), 180 d (b), 360 d (c) and 1000 d (d)
Fig.8  Equivalent circuit for fitting EIS data
Fig.9  Rconvalues of the coral concretes by using FA (a) and cement or cement- metakaolin slurry (b)
Fig.10  Rctvalues of the interfaces of stainless steel reinforcement and concretes modified by using FA (a) and cement or cement- metakaolin slurry (b)
Fig.11  Calculated Icorr-EISvalues of 2205 stainless steel reinforcement in the coral concretes modified by using FA (a) and cement or cement- metakaolin slurry (b) based on EIS, comparison of Icorr-EISvalues in two types of modified coral concrete (c)
1 Zhao Y L, Han C, Zhang S Z, et al. Experimental study on the compression age strenth of seawater coral concrete [J]. Concrete, 2011, (2): 43
赵艳林, 韩 超, 张栓柱 等. 海水拌养珊瑚混凝土抗压龄期强度试验研究 [J]. 混凝土, 2011, (2): 43
2 Chen S J. Natural overview of the Nansha Islands [J]. Mar. Sci. Bull., 1982, (1): 52
陈史坚. 南沙群岛的自然概况 [J]. 海洋通报, 1982, (1): 52
3 Wattanachai P, Otsuki N, Saito T, et al. A study on chloride ion diffusivity of porous aggregate concretes and improvement method [J]. Doboku Gakkai Ronbunshuu, 2009, 65E: 30
4 Howdyshell P A. The use of coral as an aggregate for Portland cement concrete structures [R]. Army Construction Engineering Research Laboratory, 1974
5 Feng X G, Shi R L, Xu Y W, et al. Study on corrosion resistance of stainless steel reinforcement in coral concrete [A]. China Ocean Engineering Society. Proceedings of the 18th China Ocean Coastal Engineering Symposium [C]. Beijing, 2017: 736
冯兴国, 石锐龙, 徐逸文 等. 不锈钢钢筋在珊瑚混凝土中的耐蚀性研究 [A]. 中国海洋工程学会. 第十八届中国海洋(岸)工程学术讨论会论文集(上) [C]. 北京, 2017: 736
6 Feng X G, Zhang L Y, Zhang J, et al. Effect of aluminum tri-polyphosphate on corrosion behavior of reinforcing steel in seawater prepared coral concrete [J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2019, 34: 906
doi: 10.1007/s11595-019-2136-5
7 Liu J, Chen X D, Yu A P, et al. Multi-phase mesoscopic numerical simulation of chloride iondiffusion in recycled aggregate concrete [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1111
刘 晶, 陈宣东, 虞爱平 等. 再生混凝土氯离子扩散多相细观数值模拟 [J]. 中国腐蚀与防护学报, 2023, 43: 1111
8 Yuan C F, Niu D T. Research on the durability of fly ash concrete in marine atmospheric environment[J]. Bull. Chin. Ceramic Soc., 2012, 31: 1
元成方, 牛荻涛. 海洋大气环境下粉煤灰混凝土耐久性研究 [J]. 硅酸盐通报, 2012, 31: 1
9 Yodsudjai W, Otsuki N, Nishida T, et al. Study on strength and durability of concrete using low quality coarse aggregate from circum-pacific region [A]. Proceedings of the Fourth Regional Symposium on Infrastructure Development in Civil Engineering [C]. Bangkok, 2003: 171
10 Feng X G, Lu X, Lu X Y, et al. Corrosion rate of stainless steel rebar in coral concrete prepared with seawater [J]. J. Build. Mater., 2021, 24: 1322
冯兴国, 卢 潇, 卢向雨 等. 海水拌制珊瑚混凝土中不锈钢钢筋的锈蚀速率 [J]. 建筑材料学报, 2021, 24: 1322
11 Otieno M, Beushausen H, Alexander M. Prediction of corrosion rate in reinforced concrete structures- critical review and preliminary results [J]. Mater. Corros., 2012, 63: 777
12 Broomfield J P, Rodriguez J, Ortega L M, et al. Corrosion rate measurements in reinforced concrete structures by a linear polarization device [A]. Proceedings of International Symposium on Condition Assessment, Protection, Repair, and Rehabilitation of Concrete Bridges Exposed to Aggressive Environments [C]. Minneapolis, 1993
13 Castro-Borges P, De Rincón O T, Moreno E I, et al. Performance of a 60-year-old concrete pier with stainless steel reinforcement [J]. Mater. Perform., 2002, 41: 50
14 Mistry M, Koffler C, Wong S. LCA and LCC of the world’s longest pier: a case study on nickel-containing stainless steel rebar [J]. Int. J. Life Cycle Assess, 2016, 21: 1637
doi: 10.1007/s11367-016-1080-2
15 Feng X G, Yan Q X, Lu X Y, et al. Protection performance of the submerged sacrificial anode on the steel reinforcement in the conductive carbon fiber mortar column in splash zones of marine environments [J]. Corros. Sci., 2020, 174: 108818
doi: 10.1016/j.corsci.2020.108818
16 Bao Y F, Wu Z Y, Chen Z, et al. Effect of sensitization treatment on electrochemical corrosion and pitting corrosion of 00Cr21NiMn5Mo2N stainless steel [J]. J. Chin. Soc. Corros. Protect., 2022, 42: 1027
包晔峰, 武竹雨, 陈 哲 等. 敏化处理对00Cr21NiMn5Mo2N节镍型双相不锈钢堆焊层耐腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 1027
doi: 10.11902/1005.4537.2021.289
17 González J A, Molina A, Escudero M L, et al. Errors in the electrochemical evaluation of very small corrosion rates—I. Polarization resistance method applied to corrosion of steel in concrete [J]. Corros. Sci., 1985, 25: 917
doi: 10.1016/0010-938X(85)90021-6
18 Poursaee A. Corrosion measurement techniques in steel reinforced concrete [J]. J. ASTM Int., 2011, 8: JAI103283
[1] MA Heng, TIAN Huiyun, LIU Yuxi, WANG Yuexiang, HE Kang, CUI Zhongyu, CUI Hongzhi. Corrosion Behavior of S420 Steel in Different Marine Zones[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[2] PENG Liyuan, WU Xinqiang, ZHANG Ziyu, TAN Jibo. Review on Relationship Between Hot Functional Test Water Chemistry and Corrosion Behavior of Related Component Materials in Pressurized Water Reactor Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2024, 44(3): 529-539.
[3] CHANG Xueting, SONG Jiaqi, WANG Bing, WANG Dongsheng, CHEN Wencong, WANG Haifeng. Effect of Micro-alloying with Cr, N and Al on Corrosion Resistance of High Manganese Austenitic Steel in Acidic Salt Spray Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 47-58.
[4] XING Xuesong, FAN Baitao, ZHU Xinyu, ZHANG Junying, CHEN Changfeng. Corrosion Characteristics of P110SS Casing Steel for Ultra-deep Well in Artificial Formation Water with Low H2S and High CO2 Content[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[5] YANG Xiangyu, GUAN Lei, LI Yu, ZHANG Yongkang, WANG Guan, YAN Dejun. Numerical Simulation and Experimental Study on Erosion-corrosion of Square Elbow Based on Orthogonal Test[J]. 中国腐蚀与防护学报, 2022, 42(6): 979-987.
[6] MEI Jiaxue, DU Zunfeng, ZHU Haitao. Ultimate Bearing Capacity of Ship Structure Based on Random Corrosion[J]. 中国腐蚀与防护学报, 2022, 42(4): 662-668.
[7] WANG Qixuan, LYU Wensheng, YANG Peng, ZHU Liyi, LIAO Wenjing, ZHU Yuanle. Corrosion of Stainless Steel Shell of Embedded Sensor in Tailings Pond[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[8] GE Pengli, ZENG Wenguang, XIAO Wenwen, GAO Duolong, ZHANG Jiangjiang, LI Fang. Effect of Applied Stress and Medium Flow on Corrosion Behavior of Carbon Steel in H2S/CO2 Coexisting Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[9] JIA Shichao, GAO Jiaqi, GUO Hao, WANG Chao, CHEN Yangyang, LI Qi, TIAN Yimei. Influence of Water Quality on Corrosion of Cast Iron Pipe in Reclaimed Water[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[10] ZHAO Guoxian,HUANG Jing,XUE Yan. Corrosion Behavior of Materials Used for Surface Gathering and Transportation Pipeline in an Oilfield[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.
[11] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[12] Li LIU,Sirong YU. Effect of Gd Addition on Corrosion Behavior of AM60 Magnesium Alloy[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[13] Yang LI, Chengyuan LI, Xu CHEN, Jiaxing YANG, Xintong WANG, Nanxi MING, Zhenze HAN. Gray Relationship Analysis on Corrosion Behavior of Super 13Cr Stainless Steel in Environments of Marine Oil and Gas Field[J]. 中国腐蚀与防护学报, 2018, 38(5): 471-477.
[14] Fengxuan SONG,Qizhong ZHAO,Feilong LI,Yuelu REN,Kui HUANG,Xinming ZHANG. Effect of Aging Treatment on Corrosion Rate of 7050 Al-alloy Plate[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
[15] Ming ZHU,Yong YU,Huihui ZHANG. Corrosion Behavior of L245 Steel in Simulated Oilfield Produced Water at Different Temperatures[J]. 中国腐蚀与防护学报, 2017, 37(3): 300-304.
No Suggested Reading articles found!