Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 781-788    DOI: 10.11902/1005.4537.2023.193
Current Issue | Archive | Adv Search |
Evaluation of Tubing Service Life Based on Corrosion Prediction and Strength Calculation
ZHANG Ming1, GONG Ning1, ZHANG Bo1, HUO Hongbo2, LI Haonan2, ZHONG Xiankang3()
1. State Key Laboratory of Efficient Offshore Oil Development, Tianjin Branch of CNOOC, Tianjin 300459, China
2. School of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China
3. School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
Cite this article: 

ZHANG Ming, GONG Ning, ZHANG Bo, HUO Hongbo, LI Haonan, ZHONG Xiankang. Evaluation of Tubing Service Life Based on Corrosion Prediction and Strength Calculation. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 781-788.

Download:  HTML  PDF(2956KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In high-temperature and high-pressured environments containing CO2 and H2S, the failure risk of downhole string is extremely high, which seriously threatens the safety of production. Therefore, it is of great significance to evaluate the service life of tubular column. In this paper, taking offshore gas wells as an example, the Mises stress distribution and temperature distribution were obtained through the shaft-formation finite element model. Then, an appropriate CO2/H2S corrosion prediction model was used to calculate the corrosion rate of tubing. Finally, taking the safety factor of tubing as the evaluation criteria of safety performance, the evaluation of tubing service life is completed. The results showed that the Mises stress and temperature at all levels of wellbore increased with the increase of the running depth of tubular column. At the end of tubing, the maximum temperature and Mises stress are 207oC and 447 MPa, respectively. In addition, the corrosion rate of the wellhead tubing is the highest, reaching 0.21 mm/a, according to the operation results of the corrosion model. Based on the above results, the safe service life of the tubing without any anti-corrosion measures is only 24 a. However, when corrosion inhibitors are injected, tubing can be used safely for more than 50 a when the corrosion inhibition efficiency is up to 90%.

Key words:  service life      high temperature and high pressure      finite element analysis      corrosion prediction     
Received:  12 June 2023      32134.14.1005.4537.2023.193
ZTFLH:  TG174  
Corresponding Authors:  ZHONG Xiankang, E-mail: zhongxk@yeah.net

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.193     OR     https://www.jcscp.org/EN/Y2024/V44/I3/781

Fig.1  Schematic diagram of thermal conducting cell
Fig.2  Schematic diagram of "triaxial stress" under the simultaneous action of internal pressure, external extrusion and axial force
Fig.3  Wellbore configuration
Natural gas relative densityNatural gas component / %

H2S

mg·m-3

CH4C2H6C3H8C4H10C5H12C6H14N2CO2
0.78372.4111.914.061.860.800.561.337.0746.31
0.76375.418.833.011.350.540.170.1910.4936.6
Table 1  Relative densities and components of two natural gas samples
Fig.4  Formation temperature vs. well depth curve
Fig.5  Distribution cloud map of temperature in production process
Fig.6  Relationship of formation pressure and depth
Fig.7  Distribution cloud map of Mises stress in production process
Fig.8  Variation of corrosion rate of pipeline with well depth
Group

Temperature

oC

Pressure

MPa

CO2H2SSimulated corrosion rate mm·a-1

Actual corrosion rate

mm·a-1

Error
11304616%0.007%0.03490.03238.0%
21804616%0.007%0.02260.02221.8%
Table 2  Comparisons of model calculationdata and experimental data
Fig.9  Variations of the safety factors of the oil tube with well depth under the condition of no any corrosion protection: (a) tensile safety factor, (b) extrusion safety factor, (c) compression safety factor
Fig.10  Variations of the safety factors of the oil tube with well depth under the condition of 90% corrosion inhibition efficiency: (a) tensile safety factor, (b) extrusion safety factor, (c) compression safety factor
1 Xing X S, Fan B T, Zhu X Y, et al. Corrosion characteristics of P110SS casing steel for ultra-deep well in artificial formation water with low H2S and high CO2 content [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 611
幸雪松, 范白涛, 朱新宇 等. 低H2S和高CO2分压下超深井用P110SS油套管钢腐蚀特征研究 [J]. 中国腐蚀与防护学报, 2023, 43: 611
doi: 10.11902/1005.4537.2022.225
2 Zhou Z P, Wu D K, Zhang H F, et al. Tensile property of L80 steel in air at 25-350oC and its corrosion behavior in simulated casing service conditions at 150-350oC [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 601
周志平, 吴大康, 张宏福 等. 高温下L80钢的断裂机理及CO2/H2S模拟工况下的腐蚀行为 [J]. 中国腐蚀与防护学报, 2023, 43: 601
doi: 10.11902/1005.4537.2022.259
3 Feng Y R, Fu A Q, Wang J D, et al. Failure control and integrity technologies of tubing/casing string under complicated working conditions: Research progress and prospect [J]. Nat. Gas. Ind., 2020, 40(2): 106
冯耀荣, 付安庆, 王建东 等. 复杂工况油套管柱失效控制与完整性技术研究进展及展望 [J]. 天然气工业, 2020, 40(2): 106
4 Zhou H G, Shan Q S, Shen J X, et al. Failure analysis and treatment of electric submersible pump string in Tarim Oilfield [J]. Drill. Prod. Technol., 2015, 38(5): 102
周怀光, 单全生, 沈建新 等. 塔里木油田潜油电泵管柱失效分析及治理对策 [J]. 钻采工艺, 2015, 38(5): 102
5 Li K, Li T L, Shi D Y, et al. Effect of elemental sulfur on the corrosion of 825 alloy in high temperature and high pressure environment containing CO2/H2S [J]. Equip. Environ. Eng., 2020, 17(11): 10
李 科, 李天雷, 施岱艳 等. 元素硫对825合金在高温高压含CO2/H2S环境中腐蚀行为的影响 [J]. 装备环境工程, 2020, 17(11): 10
6 Li Y, Ji H F, Xing P J, et al. Theoretical solutions of temperature field and thermal stress field in wellbore of a gas well [J]. Acta. Petrol. Sin., 2021, 42: 84
李 勇, 纪宏飞, 邢鹏举 等. 气井井筒温度场及温度应力场的理论解 [J]. 石油学报, 2021, 42: 84
7 Li X C, Tang X Z, Xue J B, et al. Safety analysis of string strength in high pressure and high yield gas Well [J]. Sci. Technol. Eng., 2022, 22: 3049
李喜成, 唐习之, 薛继彪 等. 高压高产气井油管柱强度安全分析 [J]. 科学技术与工程, 2022, 22: 3049
8 Ding L L, Lian Z H, Chen S C, et al. Numerical simulation of wellbore temperature during high-pressure deep well kills [J]. Oil. Drill. Prod. Technol., 2011, 33(4): 15
丁亮亮, 练章华, 陈世春 等. 高压深井压井过程中井筒温度数值模拟 [J]. 石油钻采工艺, 2011, 33(4): 15
9 Deng X C. Establishing the differential equation of heat conduction in the spherical coordinate system [J]. J. Anhui. Inst. Technol., 1987, 6(4): 58
邓先琛. 对建立球面坐标系中的导热微分方程式探讨 [J]. 安徽工学院学报, 1987, 6(4): 58
10 Jia X X, Xu M H, Hu G H, et al. Numerical method for three-dimensional heat conduction in cylindrical and spherical coordinates [J]. J. Chongqing Univ. Technol. (Nat. Sci), 2014, 28(1): 33
贾欣鑫, 徐明海, 胡国华 等. 三维球、柱坐标系下导热微分方程的离散求解 [J]. 重庆理工大学学报(自然科学), 2014, 28(1): 33
11 Song H. Study and application of the transient wellbore temperature fields [J]. Oil. Drill. Prod. Technol., 1994, 16(2): 67
宋 辉. 井筒瞬态温度场研究与应用 [J]. 石油钻采工艺, 1994, 16(2): 67
12 Wang J J, Wang T T. Three-dimensional well tubular design improves margins in critical wells [J]. Foreign Oil Field Eng., 2010, 26(5): 11
王建军, 王同涛. 一种提高复杂井况下管柱设计系数的三轴应力方法 [J]. 国外油田工程, 2010, 26(5): 11
13 Yuan K, Yang M. Optimization and application of casing string strength design under high-temperature conditions [J]. China Petrol. Mach., 2023, 51(1): 133
袁 可, 杨 谋. 高温环境下套管柱强度设计优化及应用 [J]. 石油机械, 2023, 51(1): 133
14 Feng C Q. Research on CO2 corrosion prediction method and anti-corrosion Measure of gas well tubing [D]. Chengdu: Southwest Petroleum University, 2015
冯超齐. 气井油管CO2腐蚀预测方法与防腐措施研究 [D]. 成都: 西南石油大学, 2015
15 Liu W W. CO2 corrosion and prediction model for oil and gas transportation systems [D]. Beijing: China University of Petroleum, 2009
刘伟伟. 油田集输管道CO2腐蚀规律和预测模型研究 [D]. 北京: 中国石油大学, 2009
16 Zhang Z, Huang Y, Li Y J, et al. Safety evaluation of production casing considering corrosion in gas well with sustained casing pressure [J]. J. Southwest Petrol. Univ. (Sci. Technol. Ed.), 2014, 36(2): 171
张 智, 黄 熠, 李炎军 等. 考虑腐蚀的环空带压井生产套管安全评价 [J]. 西南石油大学学报(自然科学版), 2014, 36(2): 171
17 Wang J D, Lin Y H, Li Y F, et al. A study on tri-axial design coefficient based on seal integrity of premium connection [J]. J. Southwest Petrol. Univ. (Sci. Technol. Ed.), 2022, 44(4): 165
王建东, 林元华, 李玉飞 等. 基于特殊螺纹密封完整性的三轴设计系数研究 [J]. 西南石油大学学报(自然科学版), 2022, 44(4): 165
doi: 10.11885/j.issn.1674-5086.2020.05.19.01
18 Lu Y, Zhao J M, Zhang M, et al. Development of CO2/H2S corrosion inhibitors in the mixed water injection system of offshore oilfield in the Bohai Sea [J]. Surf. Technol., 2018, 47(10): 59
陆 原, 赵景茂, 张 茂 等. 渤海某油田混合注水系统CO2/H2S腐蚀缓蚀剂的开发 [J]. 表面技术, 2018, 47(10): 59
19 Cheng Y P, Li Z L, Liu Q Q, et al. Research progress of CO2 corrosion inhibitors under high temperature and high pressure conditions in oil and gas fields [J]. Corros. Sci. Prot. Technol., 2015, 27: 278
程远鹏, 李自力, 刘倩倩 等. 油气田高温高压条件下CO2腐蚀缓蚀剂的研究进展 [J]. 腐蚀科学与防护, 2015, 27: 278
[1] ZHAO Guoxian, LIU Ranran, DING Langyong, ZHANG Siqi, GUO Menglong, WANG Yingchao. Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[2] ZHU Yesen, CAI Kun, HU Baowen, XIA Yunqiu, HU Taoyong, HUANG Yi. Research Progress on Characteristics and Prediction Models of Carbon Dioxide Induced Corrosion for Submarine Pipelines[J]. 中国腐蚀与防护学报, 2023, 43(6): 1225-1236.
[3] ZHOU Zhiping, WU Dakang, ZHANG Hongfu, ZHANG Lei, LI Mingxing, ZHANG Zhixin, ZHONG Xiankang. Tensile Property of L80 Steel in Air at 25-350 ℃ and Its Corrosion Behavior in Simulated Casing Service Conditions at 150-350 ℃[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[4] WANG Shasha, MA Shuaijie, CHE Kun, DU Yanxia. Application Status of Machine Learning in Field of Natural Environment Corrosion Assessment and Prediction[J]. 中国腐蚀与防护学报, 2023, 43(3): 441-451.
[5] ZHAO Guoxian, WANG Yingchao, ZHANG Siqi, SONG Yang. Influence Mechanism of H2S/CO2-charging on Corrosion of J55 Steel in an Artificial Solution[J]. 中国腐蚀与防护学报, 2022, 42(5): 785-790.
[6] LIU Baoping, ZHANG Zhiming, WANG Jianqiu, HAN En-Hou, KE Wei. Review of Stress Corrosion Crack Initiation of Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2022, 42(4): 513-522.
[7] WANG Bingqin, ZHANG Xiaolian, YONG Xingyue, ZHOU Huan, GAO Xinhua. Numerical Simulation of Galvanic Corrosion of TP2Y Copper Pipes Coupled with Steel Pipes in a Seawater Pipe Systems of Ships[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[8] CHEN Xuandong, ZHANG Qing, GU Xin, LI Xing. Probability Analysis on Service Life Prediction of Reinforced Concrete Structures[J]. 中国腐蚀与防护学报, 2021, 41(5): 673-678.
[9] Ruolin ZHU,Zhiming ZHANG,Jianqiu WANG,En-Hou HAN. Review on SCC Crack Growth Behavior of Dissimilar Metal Welds for Nuclear Power Reactors[J]. 中国腐蚀与防护学报, 2015, 35(3): 189-198.
[10] Zhiming ZHANG,Qingjiao PENG,Jianqiu WANG,En-Hou HAN,Wei KE. Stress Corrosion Cracking Behavior of Forged 316L Stainless Steel Used for Nuclear Power Plants in Alkaline Solution at 330 ℃[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
[11] CHEN Dongxu, WU Xinqiang, HAN En-Hou. Research Progress of Crevice Corrosion and Crevice Corrosion Issues of Nuclear-grade Materials[J]. 中国腐蚀与防护学报, 2014, 34(4): 295-300.
[12] HAN Xiabing,GAO Zhiming,DANG Lihua,WANG Ying,BI Huichao. Wavelet Packet Analysis of Early Corrosion Image of Q235 Steel in Simulated Atmospheric Environment[J]. 中国腐蚀与防护学报, 2013, 33(3): 211-215.
[13] HOU Zan, ZHOU Qingjun, WANG Qijiang, ZHANG Zhonghua, QI Huibin, WANG Jun. INVESTIGATION ON CARBON DIOXIDE CORROSION PERFORMANCE OF VARIOUS 13Cr STEELS IN SIMULATED STRATUM WATER[J]. 中国腐蚀与防护学报, 2012, 32(4): 300-305.
[14] DONG Meng, LIU Liewei, LIU Yuexue, ZHANG Datong. CORRELATION BETWEEN MOLECULAR STRUCTURES OF INHIBITORS AND THEIR PERFORMANCE IN HIGH TEMPERATURE AND HIGH PRESSURE H2S/CO2 ENVIRONMENTS[J]. 中国腐蚀与防护学报, 2012, 32(2): 157-162.
[15] Xiaoming Tan. Prediction Model for Corrosion of Aluminum Alloys Based on Artificial Neural network and Analysis of the Precision[J]. 中国腐蚀与防护学报, 2004, 24(4): 218-221 .
No Suggested Reading articles found!