Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (1): 71-81    DOI: 10.11902/1005.4537.2023.038
Current Issue | Archive | Adv Search |
Corrosion Behavior of TP2 Red Copper in Simulated Organic Acids Containing Industrial Environments
HE Yi1, ZHENG Chuanbo1,2(), QI Haoyu2, LIU Zhenguang2
1.School of Metallurgy Engineering, Jiangsu University of Science and Technology, Suzhou 215000, China
2.School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
Cite this article: 

HE Yi, ZHENG Chuanbo, QI Haoyu, LIU Zhenguang. Corrosion Behavior of TP2 Red Copper in Simulated Organic Acids Containing Industrial Environments. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 71-81.

Download:  HTML  PDF(25399KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With excellent electrical and thermal conductivity, TP2 copper has a wide range of applications in industrial production process. During the practical production process, a large amount of organic acid pollutants containing carboxylic acid ions will be generated. Meanwhile, as a result of the defects of TP2 copper and the impact of moisture and corrosive media in the external environment, the content of organic acid pollutants in operating ambient of TP2 copper is at the high level, which may accelerate the occurrence of organic acid corrosion on the surface of TP2 copper. In order to simulate the organic acids induced corrosion behavior of TP2 copper in industrial environments, the TP2 copper was assessed via immersion tests in solutions with different organic acid concentrations temperature-cyclically, by means of measurements of mass loss Tafel polarization and electrochemical impedance, as well as SEM characterization. The results show that in comparison to the acetic acid containing atmosphere, TP2 copper exhibits stronger corrosion tendency in the formic acid containing ones, while the higher the organic acid concentration, the much severe the corrosion of the TP2 copper. In addition, the combination of the organic acid containing atmosphere and SO2 pollutants may cause much severe corrosion damage of the TP2 copper surface, and the higher content of the SO2 pollutants, the severe the corrosive conditions. Besides, much severe corrosion and complexity of the corrosion behavior emerged on the surface of the TP2 copper in the atmosphere of co-existance of SO2 pollutants and with formic acid rather than that with acedic acid.

Key words:  TP2 copper      organic acids      SO2 contaminants      electrochemical behavior     
Received:  19 February 2023      32134.14.1005.4537.2023.038
ZTFLH:  TG174  
Corresponding Authors:  ZHENG Chuanbo, E-mail: just202206@yeah.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.038     OR     https://www.jcscp.org/EN/Y2024/V44/I1/71

Fig.1  SEM images of the TP2 copper in the formic acid atmosphere with the concentration of 1% (a), 4% (b), 7% (c) and 10% (d)
Fig.2  SEM images of the TP2 copper in the acetic acid atmosphere with the concentration of 1% (a), 4% (b), 7% (c) and 10% (d)
Corrosion mediumConcentrationMass loss / gCorrosion rate / mm·a-1
Formic acid1%0.00670.0963
0.0074
4%0.01290.1859
0.0143
7%0.01980.2761
0.0206
10%0.02540.3383
0.0241
Acetic acid1%0.0450.0724
0.0061
4%0.01130.1619
0.0124
7%0.01450.2098
0.0162
10%0.02030.2884
0.0219
Table 1  Corrosion rate of TP2 copper samples exposed to organic acid environment for 30 d
Fig.3  Trend graph of mass loss for the TP2 copper in different concentrations of formic acid (a) and acetic acid (b) atmosphere
Fig.4  Tafel polarization curves of TP2 copper after exposure 30 d in the atmospheres containing different concentrations (1%, 4%, 7% and 10%) of formic acid (a) and acetic acid (b)
Fig.5  Self-corrosive currents of TP2 copper after exposure 30 d in the solutions containing different concentrations (1%, 4%, 7% and 10%) of formic acid and acetic acid
Fig.6  Electrochemical impedance spectra of TP2 copper after exposure 30 d in the solutions containing different concentrations (1%, 4%, 7% and 10%) of formic acid (a) and acetic acid (b), and the relating equivalent circuit diagram (c)
Fig.7  Rct values of TP2 copper after exposure 30 d in the solutions containing different concentrations (1%, 4%, 7% and 10%) of formic acid (a) and acetic acid (b)
Fig.8  SEM images of the TP2 copper after exposure for 15 d in the formic acid atmosphere with 0.01mol/L (a), 0.03 mol/L (b), 0.05 mol/L (c) and 0.10 mol/L (d) Na2SO4
Fig.9  SEM images of the TP2 copper after exposure for 15 d in the acetic acid atmosphere with 0.01 mol/L (a), 0.03 mol/L (b), 0.05 mol/L (c) and 0.10 mol/L (d) Na2SO4
Corrosion mediumNa2SO4 concentration / mol·L-1Mass loss / gCorrosion rate / mm·a-1
Formic acid0.010.00830.1052
0.0071
0.030.01010.1462
0.0113
0.050.01590.2057
0.0142
0.10.02060.2898
0.0218
Acetic acid0.010.00510.0773
0.0063
0.030.00620.0923
0.0074
0.050.01010.1305
0.0090
0.10.01450.1934
0.0138
Table 2  Corrosion rate of TP2 copper after exposure for 30 d to the organic acid environment containing Na2SO4
Fig.10  Corrosion mass loss curves of copper after exposure for 30 d in formic acid (a) and acetic acid (b) atmosphere with different Na2SO4 concentrations (0.01, 0.03, 0.05 and 0.10 mol/L)
Fig.11  Tafel polarisation curves of TP2 copper after exposure for 30 d in formic acid (a) and acetic acid (b) atmosphere with different Na2SO4 concentrations (0.01, 0.03, 0.05 and 0.10 mol/L)
Fig.12  Variation of self-corrosion current density of TP2 copper after exposure for 30 d in formic acid and acetic acid atmosphere with different Na2SO4 concentrations (0.01, 0.03, 0.05 and 0.10 mol/L)
Fig.13  Impedance spectra of TP2 copper after exposure for 30 d in formic acid (a) and acetic acid (b) after addition of different concentra-tions of Na2SO4 (0.01, 0.03, 0.05 and 0.10 mol/L), and the relating equivalent circuit diagram (c)
Fig.14  Graph of the trend of Rct with Na2SO4 concentration after exposure for 30 d in the formic acid (a) and acetic acid (b)
1 Lu X Y, Feng X G, Zuo Y, et al. Improvement of protection performance of Mg-rich epoxy coating on AZ91D magnesium alloy by DC anodic oxidation [J]. Prog. Org. Coat., 2017, 104: 188
2 Zheng C B, Yi G. Investigating the influence of hydrogen on stress corrosion cracking of 2205 duplex stainless steel in sulfuric acid by electrochemical impedance spectroscopy [J]. Corros. Rev., 2017, 35: 23
doi: 10.1515/corrrev-2016-0060
3 Han R Z, Jia J W, Li Y, et al. Corrosion behavior of three super austenitic stainless steels in a molten salts mixture at 650~750oC [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 421
韩瑞珠, 贾建文, 李 阳 等. 超级奥氏体不锈钢的热腐蚀行为及机理研究 [J]. 中国腐蚀与防护学报, 2023, 43: 421
doi: 10.11902/1005.4537.2022.115
4 Duan T G, Li Z, Peng W S, et al. Corrosion characteristics of 5A06 Al-alloy exposed in natural deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 352
段体岗, 李 祯, 彭文山 等. 深海环境5A06铝合金腐蚀行为与表面特性 [J]. 中国腐蚀与防护学报, 2023, 43: 352
doi: 10.11902/1005.4537.2022.102
5 Zuo X D, Zhu Z P, Cao J, et al. Corrosion behavior of copper in cyclic dry-wet environment with gas mixture of SO2 and H2S [J]. Corros. Sci. Prot. Technol., 2017, 29: 521
左羡第, 朱志平, 曹 颉 等. 干湿交替环境中SO2和H2S混合气体对紫铜T2的腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2017, 29: 521
6 Shinato K W, Zewde A A, Jin Y. Corrosion protection of copper and copper alloys in different corrosive medium using environmentally friendly corrosion inhibitors [J]. Corros. Rev., 2020, 38: 101
doi: 10.1515/corrrev-2019-0105
7 Wang Y, Xu W C, Jiang Q T, et al. Corrosion behavior of purple copper and brass H62 in real sea navigation marine atmosphere [A]. 2020 7th Conference on Marine Materials and Corrosion Protection and 2020 1st Conference on Durability of Reinforced Concrete and Safety of Facilities in Service [C]. Wuxi, 2020: 130
王 盈, 徐玮辰, 蒋全通 等. 紫铜与黄铜H62在实海航行海洋大气中的腐蚀行为研究 [A]. 2020第七届海洋材料与腐蚀防护大会暨2020第一届钢筋混凝土耐久性与设施服役安全大会摘要集 [C]. 无锡, 2020: 130
8 Kong D C, Dong C F, Ni X Q, et al. Insight into the mechanism of alloying elements (Sn, Be) effect on copper corrosion during long-term degradation in harsh marine environment [J]. Appl. Surf. Sci., 2018, 455: 543
9 Wang B Q, Zhang X L, Yong X Y, et al. Numerical simulation of galvanic corrosion of TP2Y copper pipes coupled with steel pipes in a seawater pipe systems of ships [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 200
王炳钦, 张晓莲, 雍兴跃 等. 舰船海水管系中紫铜/钢制管道耦接后电偶腐蚀的数值模拟研究 [J]. 中国腐蚀与防护学报, 2022, 42: 200
doi: 10.11902/1005.4537.2021.044
10 Huang H L, Pan Z Q, Guo X P, et al. Effect of an alternating electric field on the atmospheric corrosion behaviour of copper under a thin electrolyte layer [J]. Corros. Sci., 2013, 75: 100
doi: 10.1016/j.corsci.2013.05.019
11 Li H T, Chen Z Y, Liu X C, et al. Study on the mechanism of the photoelectrochemical effect on the initial NaCl-induced atmospheric corrosion process of pure copper exposed in Humidified Pure Air [J]. J. Electrochem. Soc., 2018, 165: C608
doi: 10.1149/2.0771810jes
12 Wu T Q, Zhou Z F, Xu S, et al. A corrosion failure analysis of copper wires used in outdoor terminal boxes in substation [J]. Eng. Fail. Anal., 2019, 98: 83
doi: 10.1016/j.engfailanal.2019.01.070
13 Tan Y T, Liu X X, Ma L R, et al. The effect of hematite on the corrosion behavior of copper in saturated red soil solutions [J]. J. Mater. Eng. Perform., 2020, 29: 2324
doi: 10.1007/s11665-020-04741-w
14 Pei F, Liu G M, Liu X, et al. Galvanic corrosion behavior of Q235 steel-red copper in acid red soil of different water content [J]. Surf. Technol., 2017, 46: 240
裴 锋, 刘光明, 刘 欣 等. 不同湿度的酸性红壤中Q235钢-紫铜电偶腐蚀行为研究 [J]. 表面技术, 2017, 46: 240
15 Li B, Luo X G, Tang Y J, et al. Corrosion behavior of the dominant actinomycetes in soil on copper [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 345
李 波, 罗学刚, 唐永金 等. 土壤优势放线菌菌群对紫铜的腐蚀 [J]. 中国腐蚀与防护学报, 2015, 35: 345
16 Gao Y B, Du X G, Wang Q W, et al. Corrosion behavior of copper in a simulated grounding condition in electric power grid [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 435
高义斌, 杜晓刚, 王启伟 等. 铜在电网接地工况下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 435
doi: 10.11902/1005.4537.2022.098
17 Wu L, Ma A L, Zhang L M, et al. Intergranular erosion corrosion of pure copper tube in flowing NaCl solution [J]. Corros. Sci., 2022, 201: 110304
doi: 10.1016/j.corsci.2022.110304
18 Liu X, Li H H, Zhao X J, et al. Comparison of the corrosion behavior of copper tubes in formic acid and acetic acid environment [J]. Mater. Corros., 2021, 72: 1919
19 Sowards J W, Mansfield E. Corrosion of copper and steel alloys in a simulated underground storage-tank sump environment containing acid-producing bacteria [J]. Corros. Sci., 2014, 87: 460
doi: 10.1016/j.corsci.2014.07.009
20 Li H H, Liu X, Li D S, et al. An investigation on the mechanisms of ant nest corrosion of copper tube in formic acid environment [J]. Mater. Corros., 2023, 74: 138
21 Zhou J X, Yan L, Tang J, et al. Interactive effect of ant nest corrosion and stress corrosion on the failure of copper tubes [J]. Eng. Fail. Anal., 2018, 83: 9
22 Zhang Z X, Zheng C B, Yi G, et al. Investigation on the electrochemical corrosion behavior of TP2 copper and influence of BTA in organic acid environment [J]. Metals, 2022, 12:1629
doi: 10.3390/met12101629
23 Sasaki T, Itoh J, Horiguchi Y, et al. Quantitative determination of corrosion products and adsorbed water on copper in humid air containing SO2 by IR-RAS measurements [J]. Corros. Sci., 2006, 48: 4339
doi: 10.1016/j.corsci.2006.03.016
24 Vogel G. Creeping corrosion of copper on printed circuit board assemblies [J]. Microelectron. Reliab., 2016, 64: 650
doi: 10.1016/j.microrel.2016.07.043
25 Demirkan K, Derkits G E, Fleming D A, et al. Corrosion of Cu under Highly Corrosive Environments [J]. J. Electrochem. Soc., 2010, 157: C30
26 Bernardi E, Chiavari C, Martini C, et al. The atmospheric corrosion of quaternary bronzes: an evaluation of the dissolution rate of the alloying elements [J]. Appl. Phys., 2008, 92A: 83
27 Liu W, Jiang Y K, Ge H H. Comparison of electrochemical corrosion behavior of copper in liquid film in atmosphere containing SO2 or H2S [J]. Corros. Prot., 2015, 36: 934
刘 伟, 蒋以奎, 葛红花. 大气环境中SO2和H2S对铜的电化学腐蚀行为比较 [J]. 腐蚀与防护, 2015, 36: 934
28 Jiang Y, He Y H. Electrochemical corrosion behavior of micrometer-sized porous Ti3SiC2 compounds in NaCl solution [J]. Mater. Corros., 2020, 71: 54
doi: 10.1002/maco.201911051
[1] BAI Xuehan, DING Kangkang, ZHANG Penghui, FAN Lin, ZHANG Huixia, LIU Shaotong. Accelerated Corrosion Test of AH36 Ship Hull Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[2] LI Han, LIU Yuanhai, ZHAO Lianhong, CUI Zhongyu. Corrosion Behavior of 300M Ultra High Strength Steel in Simulated Marine Environment[J]. 中国腐蚀与防护学报, 2023, 43(1): 87-94.
[3] WANG Tengyu, ZHANG Zhenggui, LU Weizhong, WU Xige. Effect of Alternating Pressure on Electrochemical Behavior of Solvent-free Epoxy Coating in Simulated Ultra-deep Sea Environment[J]. 中国腐蚀与防护学报, 2022, 42(6): 929-938.
[4] LIN Zhaohui, MING Nanxi, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Hydrostatic Pressure on Corrosion Behavior of X70 Steel in Simulated Sea Water[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[5] ZHANG Teng, LIU Jing, HUANG Feng, HU Qian, GE Fangyu. Effect of Alternating Stress Frequency on Corrosion Electrochemical Behavior of E690 Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
[6] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[7] Yanliang WANG,Xu CHEN,Jidong WANG,Bo SONG,Dongsheng FAN,Chuan HE. Electrochemical Behavior of 316L Stainless Steel in Borate Buffer Solution with Different pH[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[8] Hongtao ZHAO,Weizhong LU,Jing LI,Yugui ZHENG. Electrochemical Behavior of Solvent-free Epoxy Coating during Erosion in Simulated Flowing Sea Water[J]. 中国腐蚀与防护学报, 2016, 36(4): 295-305.
[9] Xiangnan MENG,Xu CHEN,Ming WU,Yang ZHAO,Yuwen FAN. Effect of Hydrostatic Pressure on Electrochemical Behavior of X100 Steel in NaHCO3+NaCl Solution[J]. 中国腐蚀与防护学报, 2016, 36(3): 219-224.
[10] YUAN Wei,HUANG Feng,HU Qian,LIU Jing,HOU Zhenyu. Influences of Applied Tensile Stress on the Pitting Electrochemical Behavior of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2013, 33(4): 277-282.
[11] XIONG Yuanyuan,ZHANG Ya,HU Shaofeng,CHEN Qiurong,,XIE Youtao. Effects of Additions of La(CH3COO)3 and NaF on Electrochemical Behavior of AZ31 Alloys in
Mg(ClO4)2 Solution
[J]. 中国腐蚀与防护学报, 2013, 33(3): 241-244.
[12] ;. ELECTROCHEMICAL BEHAVIOR OF THESIMULATED Al2Zn SEGREGATION IN 3%NaCl SOLUTION[J]. 中国腐蚀与防护学报, 2007, 27(2): 93-96 .
[13] Qilong Guo; Zhijun Gu. ELECTROCHEMICAL BEHAVIOR CARBON STEEL IN SEAMUD[J]. 中国腐蚀与防护学报, 1999, 19(5): 315-318 .
No Suggested Reading articles found!