Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (1): 261-266    DOI: 10.11902/1005.4537.2023.008
Current Issue | Archive | Adv Search |
A Novel Cross-sectional Metallography Method for Determining Hydrogen Absorption Concentration and Hydrogen Absorption Amount of Zr-Sn-Nb Alloy Cladding Caused by High Temperature Water Corrosion
MA Yan, LAN Yuning(), CHEN Jiawei
School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China
Cite this article: 

MA Yan, LAN Yuning, CHEN Jiawei. A Novel Cross-sectional Metallography Method for Determining Hydrogen Absorption Concentration and Hydrogen Absorption Amount of Zr-Sn-Nb Alloy Cladding Caused by High Temperature Water Corrosion. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 261-266.

Download:  HTML  PDF(3396KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion and hydrogen absorption of zirconium alloy cladding for PWRs is one of the main causes for cladding embrittlement and breakage failure. Therefore, rapid and accurate determination of hydrogen concentrations in zirconium alloys is of great importance to assess the integrity of the cladding. In this paper, we used the RH600/LECO hydrogen analyzer to measure the hydrogen concentration data for several samples of Zr-Sn-Nb cladding, meanwhile the corresponding data of hydrogenated area fraction were acquired by cross-sectional microscopic image measurements. On the bases of the two group of data, a formula was proposed to figure out the distribution of hydrogen concentrations in Zr-Sn-Nb cladding, namely the so called cross-sectional metallography method. This method was validated by using a large amount of known data from the existing literatures. The results showed that the hydrogen concentration values measured by the cross-sectional metallography method were highly accurate, and the error between the hydrogen concentration value and the nominal value is less than 6%.

Key words:  Zr-Sn-Nb      cladding      hydrogen corrosion      transverse metallographical method     
Received:  13 January 2023      32134.14.1005.4537.2023.008
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(12275083);National Science and Technology Major Project(2019ZX06004009)
Corresponding Authors:  LAN Yuning, E-mail: 19897692662@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.008     OR     https://www.jcscp.org/EN/Y2024/V44/I1/261

Fig.1  Microstructure photographs of hydrogen-absorbing samples of Zr-Sn-Nb alloy cladding with 20 μg/g (a), 39 μg/g (b), 74 μg/g (c), 89 μg/g (d), 120 μg/g (e), 160 μg/g (f), 260 μg/g (g) and 320 μg/g (h) hydrogen content
Fig.2  XRD pattern of Zr-Sn-Nb alloy cladding after reaction under high temperature and high pressure
Fig.3  TEM bright field image (a) and corresponding SAED pattern (b) of hydrides in Zr-Sn-Nb alloy cladding after reaction under high temperature and high pressure
Fig.4  Relationship between hydride volume fractionFand area fraction f
Fig.5  Micrograph of Zr-Sn-Nb alloy cladding with 130 μg/g (a), 150 μg/g (b), 240 μg/g (c), 360 μg/g (d), 420 μg/g (e), 500 μg/g (f) hydride content[8,21-23]

Micrograph

WtH / μg·g-1

Percentage error

between WtH and

WtH'

Fig.5a129.850.12%
Fig.5b154.643.63%
Fig.5c253.895.79%
Fig.5d375.074.19%
Fig.5e414.311.35%
Fig.5f489.902.02%
Table 1  Calculated value of hydrogen content and error analysis based on Fig.5
1 Yang M X, Gao Y, Wang H. Effect of Zn(CH3COO)2 addition on corrosion of ZIRLO alloy in simulated PWR primary loop medium with LiOH and H3BO3 [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 199
杨明馨, 高 阳, 王 辉. 添加Zn2+对ZIRLO合金在模拟压水堆一回路含LiOH和H3BO3水溶液工况下耐腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 199
doi: 10.11902/1005.4537.2018.179
2 Liao J P, Mao Y L, Jin D S, et al. Laboratory simulation of crud deposition on Zr-alloy fuel cladding in simulated pressurized water reactor primary coolant [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 197
廖家鹏, 毛玉龙, 金德升 等. 锆合金包壳在模拟压水堆一回路冷却剂中的表面污垢沉积行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 197
doi: 10.11902/1005.4537.2022.022
3 Motta A T, Capolungo L, Chen L Q, et al. Hydrogen in zirconium alloys: a review [J]. J. Nucl. Mater., 2019, 518: 440
doi: 10.1016/j.jnucmat.2019.02.042
4 Tang R, Yang X X. Study on terminal solid solubility of hydrogen in N18, Zry-4 and M5 zirconium alloys [J]. Chin. J. Mater. Res., 2009, 23: 635
唐 睿, 杨晓雪. N18、Zry-4和M5锆合金中氢的固溶度 [J]. 材料研究学报, 2009, 23: 635
5 Bair J, Zaeem M A, Tonks M. A review on hydride precipitation in zirconium alloys [J]. J. Nucl. Mater., 2015, 466: 12
doi: 10.1016/j.jnucmat.2015.07.014
6 Sunil S, Verdhan N, Kapoor R, et al. Effect of orientation and presence of hydride on the fatigue crack growth behavior of Zr-2.5wt% Nb [J]. Int. J. Fatigue, 2016, 85: 49
doi: 10.1016/j.ijfatigue.2015.12.005
7 Nagase F, Fuketa T. Influence of hydride re-orientation on BWR cladding rupture under accidental conditions [J]. J. Nucl. Sci. Technol., 2004, 41: 1211
doi: 10.1080/18811248.2004.9726350
8 Zhang Y, Qi H D, Song X P. Expansion deformation behavior of zirconium alloy claddings with different hydrogen concentrations [J]. J. Nucl. Mater., 2021, 554: 153082
doi: 10.1016/j.jnucmat.2021.153082
9 Xu C R, Zhao W J, Xie M, et al. Effect of hydrogen on ring tensile properties of N36 zirconium alloy cladding tubes [J]. Rare Met. Mater. Eng., 2017, 46: 3922
徐春容, 赵文金, 谢 梦 等. 氢对N36锆合金包壳管环向拉伸性能的影响 [J]. 稀有金属材料与工程, 2017, 46: 3922
10 Lee H, Kim K M, Kim J S, et al. Effects of hydride precipitation on the mechanical property of cold worked zirconium alloys in fully recrystallized condition [J]. Nucl. Eng. Technol., 2020, 52: 352
doi: 10.1016/j.net.2019.07.032
11 Li X Y. Principle and tantalum-niobium applications of RH600 hydrogen mensuration equipment [J]. Hunan Nonferrous Met., 2013, 29(2): 74
李小阳. RH600氢测定仪的原理及在钽铌中的应用 [J]. 湖南有色金属, 2013, 29(2): 74
12 Pang S Q. Analysis of hydrogen in metals [J]. Dev. Appl. Mater., 1995, 10(2): 41
庞顺强. 金属中的氢分析技术 [J]. 材料开发与应用, 1995, 10(2): 41
13 Zhu C X. Gas phase quantitative hydrogen permeation method and Zr-4 alloy hydride quantitative metallography [J]. Rare Met. Mater. Eng., 1980, (4): 6
朱朝旭. 气相定量渗氢方法及锆-4合金氢化物定量金相 [J]. 稀有金属合金加工, 1980, (4): 6
14 Liu Z Y, Zhao W J, Peng Q, et al. Research on electrolytic hydrogen permeation of Zr-Sn-Nb alloy and determination of hydrogen content [A]. New Progress in Materials Science and Engineering in 2002 (Part 1) [C]. Beijing, 2002: 4
刘彦章, 赵文金, 彭 倩 等. Zr-Sn-Nb合金电解渗氢及氢含量确定研究 [A]. 2002年材料科学与工程新进展(上)——2002年中国材料研讨会论文集 [C]. 北京, 2002: 4
15 Schrire D I, Pearce J H. Scanning electron microscope techniques for studying Zircaloy corrosion and hydriding [A]. Zirconium in the Nuclear Industry: Tenth International Symposium [C]. Baltimore, 1994
16 Zeng W, Luan B F, Liu N. Hydride phases and hydride orientation in Zirconium alloys [J]. J. Mater. Eng., 2018, 46(6): 11
doi: 10.11868/j.issn.1001-4381.2016.001027
曾 文, 栾佰峰, 刘 娜. 锆合金中的氢化物相及氢化物取向 [J]. 材料工程, 2018, 46(6): 11
17 Wang J W. Study on the hydrogen content and cracking control of Nb-containing zirconium hydride moderator [D]. Beijing: General Research Institute for Nonferrous Metals, 2011
王建伟. 含Nb氢化锆慢化材料的氢含量和裂纹控制机理研究 [D]. 北京: 北京有色金属研究总院, 2011
18 Ells C E. Hydride precipitates in zirconium alloys (A review) [J]. J. Nucl. Mater., 1968, 28: 129
doi: 10.1016/0022-3115(68)90021-4
19 Une K, Ishimoto S, Etoh Y, et al. The terminal solid solubility of hydrogen in irradiated Zircaloy-2 and microscopic modeling of hydride behavior [J]. J. Nucl. Mater., 2009, 389: 127
doi: 10.1016/j.jnucmat.2009.01.017
20 Tewari R, Krishna K V M, Neogy S, et al. Zirconium and its alloys: properties and characteristics [J]. Compr. Nucl. Mater. (Second Ed.), 2020, 7: 284
21 Cinbiz M N, Brown N R, Terrani K A, et al. A pulse-controlled modified-burst test instrument for accident-tolerant fuel cladding [J]. Ann. Nucl. Energy, 2017, 109: 396
doi: 10.1016/j.anucene.2017.05.058
22 Gómez F J, Rengel M A M, Ruiz-Hervias J, et al. Study of the hoop fracture behaviour of nuclear fuel cladding from ring compression tests by means of non-linear optimization techniques [J]. J. Nucl. Mater., 2017, 489: 150
doi: 10.1016/j.jnucmat.2017.03.043
23 Gómez Sánchez F J, Rengel M A M, Ruiz-Hervias J. A new procedure to calculate the constitutive equation of nuclear fuel cladding from ring compression tests [J]. Prog. Nucl. Energy, 2017, 97: 245
doi: 10.1016/j.pnucene.2017.02.001
[1] WU Duoli, WU Haotian, SUN Hui, SHI Jianjun, WEI Xinlong, ZHANG Chao. Research Status and Development of Laser Cladding High Temperature Protective Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[2] QU Zuopeng, ZHANG Beibei, XIE Guangxiao, YANG Yuxi, WANG Yongtian, TIAN Xinli, WANG Haijun. Research Progress on Protection Technology for Waste Incinerator Heating Surfaces[J]. 中国腐蚀与防护学报, 2023, 43(3): 452-459.
[3] LIAO Jiapeng, MAO Yulong, JIN Desheng, LI Jinggang. Laboratory Simulation of Crud Deposition on Zr-alloy Fuel Cladding in Simulated Pressurized Water Reactor Primary Coolant[J]. 中国腐蚀与防护学报, 2023, 43(1): 197-201.
[4] PEI Shubo, WAN Dongyang, ZHOU Ping, CAO Guoqin, HU Junhua. Research Progress on Preparation, Microstructure, Oxidation- and Corrosion-resistance of High-entropy Alloy Coatings[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[5] ZHENG Shien, PAN Yingjun, ZHANG Heng, KE Deqing, YANG Ling, ZHU Xingyu. Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[6] SHEN Zhao, ZHANG Lefu, ZHU Fawen, BAO Yichen. Corrosion Behavior of Candidate SCWR Fuel Cladding Materials[J]. 中国腐蚀与防护学报, 2014, 34(4): 301-306.
[7] Jian Xv; Manying Zhong; Shixing Guo. CHARACTERISTICS OF HYDROGEN DAMAGES FORHYDROGENATION REACTOR WALL-MATERIALS[J]. 中国腐蚀与防护学报, 2003, 23(3): 149-155 .
[8] Wenjin Zhao; Zhi Miao; Hongman Jiang. CORROSION BEHAVIOR OF Zr-Sn-Nb ALLOY[J]. 中国腐蚀与防护学报, 2002, 22(2): 124-128 .
[9] ZHANG Song CHEN Jiang GE Jing-yan WANG Mao-cai WU Wei-tao(State Key Laboratory for Corrosion and Protection ; Shenyang 110015)(Institute of Corrosion and Protection of Metals; Chinese Academy of Science; Shenyang 110015) (Shenyang Polytechnic University; . STUDY ON MICROSTRUCTURE AND PROPERTIES OF LASER CLADDING Co-BASE RARE EARTH ALLOY[J]. 中国腐蚀与防护学报, 1998, 18(4): 302-306.
No Suggested Reading articles found!