|
|
|
| A Novel Cross-sectional Metallography Method for Determining Hydrogen Absorption Concentration and Hydrogen Absorption Amount of Zr-Sn-Nb Alloy Cladding Caused by High Temperature Water Corrosion |
MA Yan, LAN Yuning( ), CHEN Jiawei |
| School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China |
|
Cite this article:
MA Yan, LAN Yuning, CHEN Jiawei. A Novel Cross-sectional Metallography Method for Determining Hydrogen Absorption Concentration and Hydrogen Absorption Amount of Zr-Sn-Nb Alloy Cladding Caused by High Temperature Water Corrosion. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 261-266.
|
|
|
Abstract Corrosion and hydrogen absorption of zirconium alloy cladding for PWRs is one of the main causes for cladding embrittlement and breakage failure. Therefore, rapid and accurate determination of hydrogen concentrations in zirconium alloys is of great importance to assess the integrity of the cladding. In this paper, we used the RH600/LECO hydrogen analyzer to measure the hydrogen concentration data for several samples of Zr-Sn-Nb cladding, meanwhile the corresponding data of hydrogenated area fraction were acquired by cross-sectional microscopic image measurements. On the bases of the two group of data, a formula was proposed to figure out the distribution of hydrogen concentrations in Zr-Sn-Nb cladding, namely the so called cross-sectional metallography method. This method was validated by using a large amount of known data from the existing literatures. The results showed that the hydrogen concentration values measured by the cross-sectional metallography method were highly accurate, and the error between the hydrogen concentration value and the nominal value is less than 6%.
|
|
Received: 13 January 2023
32134.14.1005.4537.2023.008
|
|
|
| Fund: National Natural Science Foundation of China(12275083);National Science and Technology Major Project(2019ZX06004009) |
Corresponding Authors:
LAN Yuning, E-mail: 19897692662@163.com
|
| 1 |
Yang M X, Gao Y, Wang H. Effect of Zn(CH3COO)2 addition on corrosion of ZIRLO alloy in simulated PWR primary loop medium with LiOH and H3BO3 [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 199
|
|
杨明馨, 高 阳, 王 辉. 添加Zn2+对ZIRLO合金在模拟压水堆一回路含LiOH和H3BO3水溶液工况下耐腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 199
doi: 10.11902/1005.4537.2018.179
|
| 2 |
Liao J P, Mao Y L, Jin D S, et al. Laboratory simulation of crud deposition on Zr-alloy fuel cladding in simulated pressurized water reactor primary coolant [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 197
|
|
廖家鹏, 毛玉龙, 金德升 等. 锆合金包壳在模拟压水堆一回路冷却剂中的表面污垢沉积行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 197
doi: 10.11902/1005.4537.2022.022
|
| 3 |
Motta A T, Capolungo L, Chen L Q, et al. Hydrogen in zirconium alloys: a review [J]. J. Nucl. Mater., 2019, 518: 440
doi: 10.1016/j.jnucmat.2019.02.042
|
| 4 |
Tang R, Yang X X. Study on terminal solid solubility of hydrogen in N18, Zry-4 and M5 zirconium alloys [J]. Chin. J. Mater. Res., 2009, 23: 635
|
|
唐 睿, 杨晓雪. N18、Zry-4和M5锆合金中氢的固溶度 [J]. 材料研究学报, 2009, 23: 635
|
| 5 |
Bair J, Zaeem M A, Tonks M. A review on hydride precipitation in zirconium alloys [J]. J. Nucl. Mater., 2015, 466: 12
doi: 10.1016/j.jnucmat.2015.07.014
|
| 6 |
Sunil S, Verdhan N, Kapoor R, et al. Effect of orientation and presence of hydride on the fatigue crack growth behavior of Zr-2.5wt% Nb [J]. Int. J. Fatigue, 2016, 85: 49
doi: 10.1016/j.ijfatigue.2015.12.005
|
| 7 |
Nagase F, Fuketa T. Influence of hydride re-orientation on BWR cladding rupture under accidental conditions [J]. J. Nucl. Sci. Technol., 2004, 41: 1211
doi: 10.1080/18811248.2004.9726350
|
| 8 |
Zhang Y, Qi H D, Song X P. Expansion deformation behavior of zirconium alloy claddings with different hydrogen concentrations [J]. J. Nucl. Mater., 2021, 554: 153082
doi: 10.1016/j.jnucmat.2021.153082
|
| 9 |
Xu C R, Zhao W J, Xie M, et al. Effect of hydrogen on ring tensile properties of N36 zirconium alloy cladding tubes [J]. Rare Met. Mater. Eng., 2017, 46: 3922
|
|
徐春容, 赵文金, 谢 梦 等. 氢对N36锆合金包壳管环向拉伸性能的影响 [J]. 稀有金属材料与工程, 2017, 46: 3922
|
| 10 |
Lee H, Kim K M, Kim J S, et al. Effects of hydride precipitation on the mechanical property of cold worked zirconium alloys in fully recrystallized condition [J]. Nucl. Eng. Technol., 2020, 52: 352
doi: 10.1016/j.net.2019.07.032
|
| 11 |
Li X Y. Principle and tantalum-niobium applications of RH600 hydrogen mensuration equipment [J]. Hunan Nonferrous Met., 2013, 29(2): 74
|
|
李小阳. RH600氢测定仪的原理及在钽铌中的应用 [J]. 湖南有色金属, 2013, 29(2): 74
|
| 12 |
Pang S Q. Analysis of hydrogen in metals [J]. Dev. Appl. Mater., 1995, 10(2): 41
|
|
庞顺强. 金属中的氢分析技术 [J]. 材料开发与应用, 1995, 10(2): 41
|
| 13 |
Zhu C X. Gas phase quantitative hydrogen permeation method and Zr-4 alloy hydride quantitative metallography [J]. Rare Met. Mater. Eng., 1980, (4): 6
|
|
朱朝旭. 气相定量渗氢方法及锆-4合金氢化物定量金相 [J]. 稀有金属合金加工, 1980, (4): 6
|
| 14 |
Liu Z Y, Zhao W J, Peng Q, et al. Research on electrolytic hydrogen permeation of Zr-Sn-Nb alloy and determination of hydrogen content [A]. New Progress in Materials Science and Engineering in 2002 (Part 1) [C]. Beijing, 2002: 4
|
|
刘彦章, 赵文金, 彭 倩 等. Zr-Sn-Nb合金电解渗氢及氢含量确定研究 [A]. 2002年材料科学与工程新进展(上)——2002年中国材料研讨会论文集 [C]. 北京, 2002: 4
|
| 15 |
Schrire D I, Pearce J H. Scanning electron microscope techniques for studying Zircaloy corrosion and hydriding [A]. Zirconium in the Nuclear Industry: Tenth International Symposium [C]. Baltimore, 1994
|
| 16 |
Zeng W, Luan B F, Liu N. Hydride phases and hydride orientation in Zirconium alloys [J]. J. Mater. Eng., 2018, 46(6): 11
doi: 10.11868/j.issn.1001-4381.2016.001027
|
|
曾 文, 栾佰峰, 刘 娜. 锆合金中的氢化物相及氢化物取向 [J]. 材料工程, 2018, 46(6): 11
|
| 17 |
Wang J W. Study on the hydrogen content and cracking control of Nb-containing zirconium hydride moderator [D]. Beijing: General Research Institute for Nonferrous Metals, 2011
|
|
王建伟. 含Nb氢化锆慢化材料的氢含量和裂纹控制机理研究 [D]. 北京: 北京有色金属研究总院, 2011
|
| 18 |
Ells C E. Hydride precipitates in zirconium alloys (A review) [J]. J. Nucl. Mater., 1968, 28: 129
doi: 10.1016/0022-3115(68)90021-4
|
| 19 |
Une K, Ishimoto S, Etoh Y, et al. The terminal solid solubility of hydrogen in irradiated Zircaloy-2 and microscopic modeling of hydride behavior [J]. J. Nucl. Mater., 2009, 389: 127
doi: 10.1016/j.jnucmat.2009.01.017
|
| 20 |
Tewari R, Krishna K V M, Neogy S, et al. Zirconium and its alloys: properties and characteristics [J]. Compr. Nucl. Mater. (Second Ed.), 2020, 7: 284
|
| 21 |
Cinbiz M N, Brown N R, Terrani K A, et al. A pulse-controlled modified-burst test instrument for accident-tolerant fuel cladding [J]. Ann. Nucl. Energy, 2017, 109: 396
doi: 10.1016/j.anucene.2017.05.058
|
| 22 |
Gómez F J, Rengel M A M, Ruiz-Hervias J, et al. Study of the hoop fracture behaviour of nuclear fuel cladding from ring compression tests by means of non-linear optimization techniques [J]. J. Nucl. Mater., 2017, 489: 150
doi: 10.1016/j.jnucmat.2017.03.043
|
| 23 |
Gómez Sánchez F J, Rengel M A M, Ruiz-Hervias J. A new procedure to calculate the constitutive equation of nuclear fuel cladding from ring compression tests [J]. Prog. Nucl. Energy, 2017, 97: 245
doi: 10.1016/j.pnucene.2017.02.001
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|