|
|
Preparation and Perfromance of Rare Earth Cerium Modified Graphene Oxide / Waterborne Epoxy Resin Composite Coating |
CHEN Shirun, CHEN Wenge( ), QIAN Ying, ZHANG Hui |
School of Material Science and Engineering, Xi'an University of Technology, Xi'an 710048, China |
|
Cite this article:
CHEN Shirun, CHEN Wenge, QIAN Ying, ZHANG Hui. Preparation and Perfromance of Rare Earth Cerium Modified Graphene Oxide / Waterborne Epoxy Resin Composite Coating. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 107-118.
|
Abstract The prepared rare earth cerium modified graphene/waterborne epoxy resin composite coating was applied on the surface of Q235 steel by spraying, rolling and brushing respectively, then of which the structure and corrosion resistance in 3.5%NaCl solution were studied. The results showed that as nano particles, rare earth cerium or CeO2 was chemically deposited on the surface of graphene, while the modified graphene was uniformly distributed in epoxy resin as small lamellae. The applied composite coating on Q235 steel presents a stacked structure of graphene lamellae, while the fractured surface of the coating presents a pattern of river-like silve stripes. The formation of the composite coating applied by different methods may be described as that: the spraying method relies on the high-speed moving gas to impact the atomized coating droplets onto the surface of the substrate and quickly gather and spread them into a film, which improves the combination of the coating to the substrate while purifying the surface of the substrate. The roller coating method relies on the wire rod coater, and the brush coating method relies on the soft brush to combine the coating with the substrate. Thus molecules in the coating are easy to stack, and mocropores may easy form on the surface. The adhesion of the coating was measured to be 0-1, the hardness was 2H, and the surface roughness was ~2 μm. The corrosion rate is 1.565 × 10-4-5.889 × 10-3 mm/a. It is found that the coating applied by spraying method has the best comprehensive performance.
|
Received: 19 January 2023
32134.14.1005.4537.2023.012
|
|
Fund: Shaanxi Coal Industry Group United Fund of China(2019JLM-2);Xi'an Scinece and Technology Planning Project(21XJZZ0042) |
Corresponding Authors:
CHEN Wenge, E-mail: wgchen001@263.net
|
1 |
Li J Y, Dai D Y, Qian C, et al. Corrosion behavior of PANI nanofiber/modified GO/waterborne epoxy composite coating on stainless steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 156
|
|
李建永, 代殿宇, 钱 程 等. 不锈钢表面聚苯胺纳米纤维/改性氧化石墨烯/水性环氧复合涂层的制备与防护性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 156
doi: 10.11902/1005.4537.2020.271
|
2 |
Chen M Z. Advantages and disadvantages of water-based coating [J]. Build. Tech. Dev., 2015, 42(2): 66
|
|
陈敏竹. 水性涂料的优势及面临的问题 [J]. 建筑技术开发, 2015, 42(2): 66
|
3 |
Liang C X, Liu Z, Zhang S F. Research progress in modification and anti-corrosion properties of waterborne coatings [J]. Mater. Prot., 2019, 52(7): 135
|
|
梁楚欣, 刘 峥, 张淑芬. 水性防腐蚀涂料的改性及其防腐蚀性能研究进展 [J]. 材料保护, 2019, 52(7): 135
|
4 |
Zhao X X, Li K, Li W M, et al. Study on the corrosion protection mechanism of graphene modified anticorrosive coatings [J]. China Coat., 2017, 32(2): 18
|
|
赵新新, 李 凯, 李伟铭 等. 石墨烯改性防腐涂料的防腐机理研究 [J]. 中国涂料, 2017, 32(2): 18
|
5 |
Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of M-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
|
|
栾 浩, 孟凡帝, 刘 莉 等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161
|
6 |
Wang Y, Li Y, Zhu J, et al. Surface modification mechanism of graphene oxide by adding rare earths [J]. J. Mater. Eng., 2018, 46(5): 29
doi: 10.11868/j.issn.1001-4381.2017.000429
|
|
王 莹, 李 勇, 朱 靖 等. 氧化石墨烯表面稀土改性机理 [J]. 材料工程, 2018, 46(5): 29
|
7 |
Lei Y H, Liu N X, Zhang Y L, et al. Preparation, corrosion-and wear-resistance of polymethyl methacrylate coating modified with particles of basalt/cerium oxide composite [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 597
|
|
类延华, 刘宁轩, 张玉良 等. 玄武岩/氧化铈改性PMMA涂层的防腐及耐磨性能的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 597
doi: 10.11902/1005.4537.2021.186
|
8 |
Zong Y, Song R G, Hua T S, et al. Microstructure and properties of rare earth CeO2-doped graphene composite coatings prepared by MAO on AA7050 [J]. Int. J. Mater. Res., 2021, 111: 923
doi: 10.3139/146.111871
|
9 |
Liang Q M, Wang W, Chen Z S, et al. Effects of rare earth metal oxide doping on micromorphology and corrosion behavior of hydroxyapatite-graphene oxide composite coating fabriacted on AZ91 magnesium alloy [J]. Int. J. Electrochem. Sci., 2021, 16: 210647
doi: 10.20964/2021.06.28
|
10 |
Alam R, Mobin M, Aslam J. Polypyrrole/graphene nanosheets/rare earth ions/dodecyl benzene sulfonic acid nanocomposite as a highly effective anticorrosive coating [J]. Surf. Coat. Technol., 2016, 307: 382
doi: 10.1016/j.surfcoat.2016.09.010
|
11 |
Zhang X K, Zhou Y, Liang A M, et al. Facile fabrication and corrosion behavior of iron and iron-reduced graphene oxide composite coatings by electroless plating from baths containing no reducing agent [J]. Surf. Coat. Technol., 2016, 304: 519
doi: 10.1016/j.surfcoat.2016.07.071
|
12 |
Ye Y W, Zhang D W, Liu T, et al. Superior corrosion resistance and self-healable epoxy coating pigmented with silanzied trianiline-intercalated graphene [J]. Carbon, 2019, 142: 164
doi: 10.1016/j.carbon.2018.10.050
|
13 |
Xiao F J, Qian C, Guo M Y, et al. Anticorrosive durability of zinc-based waterborne coatings enhanced by highly dispersed and conductive polyaniline/graphene oxide composite [J]. Prog. Org. Coat., 2018, 125: 79
|
14 |
Zheng T L. Modern Coatings and Coating Engineering [M]. Beijing: Beihang University Press, 2003
|
|
郑天亮. 现代涂料与涂装工程 [M]. 北京: 北京航空航天大学出版社, 2003
|
15 |
Dong J C, Zhang S H, Lyu Z W, et al. Effect of base metal surface treatment on adhesion and capacitive behavior of organic coatings [J]. Shandong Chem. Ind., 2020, 49(4): 135
|
|
董佳晨, 张胜寒, 吕志文 等. 基底金属表面处理对有机涂层附着力和电容行为的影响 [J]. 山东化工, 2020, 49(4): 135
|
16 |
Wang H W, Mu X L, Liu C C. Effect of substrate surface state on adhesion of silane epoxy hybrid resin coating/2024 aluminium alloy [J]. Equip. Environ. Eng., 2016, 13(1): 14
|
|
王浩伟, 慕仙莲, 刘成臣. 基体表面状态对硅烷环氧杂化树脂涂层/2024铝合金间附着力影响 [J]. 装备环境工程, 2016, 13(1): 14
|
17 |
Zhang F, Qian H C, Wang L T, et al. Superhydrophobic carbon nanotubes/epoxy nanocomposite coating by facile one-step spraying [J]. Surf. Coat. Technol., 2018, 341: 15
doi: 10.1016/j.surfcoat.2018.01.045
|
18 |
Li J, Feng L J, Li G Z, et al. Preparation and characterization of fluorocarbon-multiwall carbon nanotube composite coatings [J]. J. Funct. Mater., 2016, 47: 3232
doi: 10.3969/j.issn.1001-9731.2016.03.043
|
|
李 娟, 冯拉俊, 李光照 等. 氟碳漆/碳纳米管导电防腐涂层的制备及表征 [J]. 功能材料, 2016, 47: 3232
|
19 |
Dong Y H. Anti-corrosion effect of magnesium phosphate cement coating on carbon steel [D]. Xi'an: Southwest Jiaotong University, 2017
|
|
董英豪. 碳钢表面磷酸镁水泥涂层的防腐性研究 [D]. 西安: 西南交通大学, 2017
|
20 |
The State Bureau of Quality and Technical Supervision. Paints and varnishes-Cross cut test for films [S]. Beijing: Standards Press of China, 1999
|
|
国家质量技术监督局. 色漆和清漆 漆膜的划格试验 [S]. 北京: 中国标准出版社, 1999
|
21 |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Paints and varnishes - Determination of film hardness by pencil test [S]. Beijing: Standards Press of China, 2007
|
|
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 色漆和清漆 铅笔法测定漆膜硬度 [S]. 北京: 中国标准出版社, 2007
|
22 |
Zhu D Y, Zhang Y C, Dai P Q, et al. Novel characterization of wetting properties and the calculation of liquid-solid interface tension (Ⅱ) [J]. Sci. Technol. Eng., 2007, 7: 3063
|
|
朱定一, 张远超, 戴品强 等. 润湿性表征体系及液固界面张力计算的新方法(Ⅱ) [J]. 科学技术与工程, 2007, 7: 3063
|
23 |
Yu Z X, Di H H, Ma Y, et al. Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings [J]. Surf. Coat. Technol., 2015, 276: 471
doi: 10.1016/j.surfcoat.2015.06.027
|
24 |
El-Rahman M A, Mohamed L A L, Said N M. Effect of high gamma irradiation doses on structure and morphology properties for Epoxy resins [J]. Optik, 2021, 226: 165674
|
25 |
Naeem M, Kuan H C, Michelmore A, et al. Epoxy/graphene nanocomposites prepared by in-situ microwaving [J]. Carbon, 2021, 177: 271
doi: 10.1016/j.carbon.2021.02.059
|
26 |
Wei B Z, Chen W C, Zhu X, et al. Study of electroless plating Cu by reduced graphene oxide and the effects on the microstructures and properties of RGO/Cu composites [J]. Powder Metall. Technol., 2018, 36: 363
|
|
魏邦争, 陈闻超, 朱 曦 等. 石墨烯化学镀铜及其对石墨烯/铜基复合材料组织性能的影响 [J]. 粉末冶金技术, 2018, 36: 363
doi: 10.19591/j.cnki.cn11-1974/tf.2018.05.008
|
27 |
Zaman I, Kuan H C, Meng Q S, et al. A facile approach to chemically modified graphene and its polymer nanocomposites [J]. Adv. Funct. Mater., 2012, 22: 2735
doi: 10.1002/adfm.v22.13
|
28 |
Guan L Z, Wan Y J, Gong L X, et al. Toward effective and tunable interphases in graphene oxide/epoxy composites by grafting different chain lengths of polyetheramine onto graphene oxide [J]. J. Mater. Chem., 2014, 2A: 15058
|
29 |
Wang X, Li Y, Li C, et al. Highly orientated graphene/epoxy coating with exceptional anti-corrosion performance for harsh oxygen environments [J]. Corros. Sci., 2020, 176: 109049
doi: 10.1016/j.corsci.2020.109049
|
30 |
Contu F, Fenzy L, Taylor S R. An FT-IR investigation of epoxy coatings as a function of electrolyte composition [J]. Prog. Org. Coat., 2012, 75: 92
doi: 10.1016/j.porgcoat.2012.04.001
|
31 |
Hao S S, Sun X F, Song W, et al. Effect of modified graphene on corrosion resistance of epoxy resin coating [J]. Paint Coat. Ind., 2018, 48(12): 34
|
|
郝松松, 孙晓峰, 宋 巍 等. 改性石墨烯对环氧树脂涂层耐腐蚀性能的影响 [J]. 涂料工业, 2018, 48(12): 34
|
32 |
Wang J F, Jin X X, Li C H, et al. Graphene and graphene derivatives toughening polymers: toward high toughness and strength [J]. Chem. Eng. J., 2019, 370: 831
doi: 10.1016/j.cej.2019.03.229
|
33 |
Wang J F, Li C H, Zhang X M, et al. Polycarbonate toughening with reduced graphene oxide: toward high toughness, strength and notch resistance [J]. Chem. Eng. J., 2017, 325: 474
doi: 10.1016/j.cej.2017.05.090
|
34 |
Mao J Y, Peng R S. Study on new PPS composite coating preparation and performance [J]. Dev. Appl. Mater., 2014, 29(1): 36
|
|
毛杰勇, 彭如恕. 新型聚苯硫醚复合涂层的制备和性能研究 [J]. 材料开发与应用, 2014, 29(1): 36
|
35 |
Bi C B, Gong W Y, Lang J F. Effect of nano-SiO2 on film hardness of flurocarbon coatings [J]. Manag. Technol. SME, 2013, (6): 295
|
|
毕春波, 巩维艳, 郎建峰. 纳米SiO2对氟碳涂料漆膜硬度的影响 [J]. 中小企业管理与科技, 2013, (6): 295
|
36 |
Wenzel R N. Surface roughness and contact angle [J]. J. Phys. Chem., 1949, 53: 1466
|
37 |
Cassie A B D. Contact angles [J]. Discuss. Faraday Soc., 1948, 3: 11
doi: 10.1039/df9480300011
|
38 |
Zhao T, Feng Y, Cao M L, et al. Preparation and properties of super hydrophobic and oleophobic polystyrene [J]. J. Funct. Mater., 2021, 52: 11209
doi: 10.3969/j.issn.1001-9731.2021.11.031
|
|
赵 霆, 凤 仪, 曹梦丽 等. 超疏水疏油聚苯乙烯的制备及性能研究 [J]. 功能材料, 2021, 52: 11209
|
39 |
Cheng S, Dong Y K, Zhang X J. Study of the influence of apparent contact angle on regular rough surface considering liquid wetting properties [J]. Mech. Sci. Technol. Aerosp. Eng., 2007, 26: 822
|
|
程 帅, 董云开, 张向军. 规则粗糙固体表面液体浸润性对表观接触角影响的研究 [J]. 机械科学与技术, 2007, 26: 822
|
40 |
Li X B, Liu Y. Contact angle model and wettability on the surfaces with microstructures [J]. Mater. Rep., 2009, 23(24): 101
|
|
李小兵, 刘 莹. 微观结构表面接触角模型及其润湿性 [J]. 材料导报, 2009, 23(24): 101
|
41 |
Jiang H Y, Zhang Y X, Liang A G, et al. Influencing factors and prediction model of material surface wettability [J]. Surf. Technol., 2018, 47(1): 60
|
|
蒋华义, 张亦翔, 梁爱国 等. 材料表面润湿性的影响因素及预测模型 [J]. 表面技术, 2018, 47(1): 60
|
42 |
Pourhashem S, Vaezi M R, Rashidi A. Investigating the effect of SiO2-graphene oxide hybrid as inorganic nanofiller on corrosion protection properties of epoxy coatings [J]. Surf. Coat. Technol., 2017, 311: 282
doi: 10.1016/j.surfcoat.2017.01.013
|
43 |
Li Y, Zhao Y R, Li H. Preparation and characterization of graphene oxide modified by rare earth [J]. J. Funct. Mater., 2017, 48: 10204
doi: 10.3969/j.issn.1001-9731.2017.10.036
|
|
李 勇, 赵亚茹, 李 焕. 稀土改性氧化石墨烯的制备及表征 [J]. 功能材料, 2017, 48: 10204
|
44 |
Conradi M, Kocijan A, Kek-Merl D, et al. Mechanical and anticorrosion properties of nanosilica-filled epoxy-resin composite coatings [J]. Appl. Surf. Sci., 2014, 292: 432
doi: 10.1016/j.apsusc.2013.11.155
|
45 |
Parhizkar N, Ramezanzadeh B, Shahrabi T. Corrosion protection and adhesion properties of the epoxy coating applied on the steel substrate pre-treated by a sol-gel based silane coating filled with amino and isocyanate silane functionalized graphene oxide nanosheets [J]. Appl. Surf. Sci., 2018, 439: 45
doi: 10.1016/j.apsusc.2017.12.240
|
46 |
Zhao D N, Wang F, Yang X S, et al. Study on the properties of graphene/expoxy resin anticorrosive coatings [J]. Chem. Eng., 2020, 34(12): 6
|
|
赵岱楠, 王 飞, 杨雪松 等. 石墨烯/环氧树脂防腐涂料性能研究 [J]. 化学工程师, 2020, 34(12): 6
|
47 |
Fan B, Guan Z B, Wang H J, et al. Electrochemical processes in all-solid-state Li-S batteries studied by electrochemical impedance spectroscopy [J]. Solid State Ionics, 2021, 368: 115680
doi: 10.1016/j.ssi.2021.115680
|
48 |
Yang S, Tang N, Yan M C, et al. Effect of temperature on corrosion behavior of X80 pipeline steel in acidic soil [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 227
|
|
杨 霜, 唐 囡, 闫茂成 等. 温度对X80管线钢酸性红壤腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2015, 35: 227
|
49 |
Hirschorn B, Orazem M E, Tribollet B, et al. Determination of effective capacitance and film thickness from constant-phase-element parameters [J]. Electrochim. Acta, 2010, 55: 6218
doi: 10.1016/j.electacta.2009.10.065
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|