Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (1): 100-106    DOI: 10.11902/1005.4537.2023.037
Current Issue | Archive | Adv Search |
Effect of Si Content on Oxidation Behavior of Quaternary Fe-20Ni-20Cr- ySi Alloys in Oxygen at 900oC
FENG Kangkang, REN Yanjie(), LV Yunlei, ZHOU Mengni, CHEN Jian, NIU Yan()
Department of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410076, China
Cite this article: 

FENG Kangkang, REN Yanjie, LV Yunlei, ZHOU Mengni, CHEN Jian, NIU Yan. Effect of Si Content on Oxidation Behavior of Quaternary Fe-20Ni-20Cr- ySi Alloys in Oxygen at 900oC. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 100-106.

Download:  HTML  PDF(8052KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The oxidation behavior of Fe-20Ni-20Cr-ySi (y = 0, 1, 3, 5, mass fraction, %) alloys were studied in 1 atm O2 at 900oC for 24 h. After oxidation, Fe-20Ni-20Cr alloy without Si addition formed a complex oxide scale on the surface with poor protectiveness. When the Si content increased from 1% to 3%, a transition from internal to external oxidation of Si occurred. Therefore, additions of Si can significantly improve the oxidation resistance of the austenitic Fe-20Ni-20Cr alloy. Both Fe-20Ni-20Cr-3Si and Fe-20Ni-20Cr-5Si formed an amorphous SiO2 layer on the Cr2O3/alloy interface, and this continuous amorphous SiO2 layer provided an effective barrier to prevent the outward diffusion of Fe, Ni and Cr, as well as the inward migration of oxygen. A comparison of the oxidation behavior of alloys with different Si contents indicated that Fe-20Ni-20Cr-3Si has the most excellent oxidation resistance properties.

Key words:  Fe-Ni-Cr-Si alloy      silicon      high temperature oxidation      oxidation kinetics     
Received:  19 February 2023      32134.14.1005.4537.2023.037
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(52171066)
Corresponding Authors:  REN Yanjie, E-mail: yjren@csust.edu.cn
NIU Yan, yniu@csust.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.037     OR     https://www.jcscp.org/EN/Y2024/V44/I1/100

AlloyNominal compositionMeasured composition
atomic fraction, %mass fraction, %
Fe-20Ni-20CrFe-19.13Ni-20.89CrFe-20.2Ni-19.5Cr
Fe-20Ni-20Cr-1SiFe-18.84Ni-21.26Cr-2.02SiFe-20.1Ni-20.1Cr-1.0Si
Fe-20Ni-20Cr-3SiFe-18.47Ni-21.78Cr-5.76SiFe-20.1Ni-21.0Cr-3.0Si
Fe-20Ni-20Cr-5SiFe-17.99Ni-20.41Cr-9.48SiFe-20.1Ni-19.9Cr-5.0Si
Table 1  Nominal and ICP-OES determined compositions of Fe-20Ni-20Cr-ySi (y = 0, 1, 3, 5, %) alloys
Fig.1  Linear (a, c) and parabolic (b, d) plots of oxidation kinetic curves of Fe-20Ni-20Cr-ySi (y = 0, 1, 3, 5, %) alloys in 1atm O2 at 900oC for 24 h
AlloyParabolic stages
Fe-20Ni-20Cr4.32 × 10-12 (0-3 h)5.85 × 10-11 (3-9 h)1.26 × 10-12 (9-24 h)
Fe-20Ni-20Cr-1Si4.56 × 10-12 (0-6 h)9.97 × 10-13 (6-18 h)
Fe-20Ni-20Cr-3Si4.26 × 10-13 (0-12 h)
Fe-20Ni-20Cr-5Si1.17 × 10-12 (0-6 h)8.76 × 10-13 (6-16 h)
Table 2  Parabolic rate constants of the oxidation kinetics of Fe-20Ni-20Cr-ySi (y = 0, 1, 3, 5, %) alloys in 1 atm O2 at 900oC for 24 h (g2·cm-4·s-1)
Fig.2  General (a) and enlarged (b) SEM/BEI views of the cross section of Fe-20Ni-20Cr oxidized in 1 atm O2 at 900℃ for 24 h, XRD pattern (c) and EDS maps in the selected area in Fig.2b (d)
Fig.3  SEM micrograph of the cross section of Fe-20Ni-20Cr-1Si oxidized in 1 atm O2 at 900oC for 24 h (a), and corresponding EDS elemental maps of the selected area in Fig.3a (b)
Fig.4  SEM micrograph of the cross section of Fe-20Ni-20Cr-3Si oxidized in 1 atm O2 at 900oC for 24 h (a) and EDS elemental scannings of the selected area in Fig.4a (b)
Fig.5  Micrographs of the cross section of Fe-20Ni-20Cr-5Si alloy oxidized in 1 atm O2 at 900oC for 24 h: (a) general view, (b) enlarged view of the selected area in Fig.5a
1 Liu L, Yang Z G, Zhang C, et al. Effect of water vapour on the oxidation of Fe-13Cr-5Ni martensitic alloy at 973 K [J]. Corros. Sci., 2012, 60: 90
doi: 10.1016/j.corsci.2012.04.008
2 Jullian D, Prillieux A, Zhang J, et al. Oxygen permeability of Fe-Ni-Cr alloys at 1100 and 1150oC under carbon-free and carbon-containing gases [J]. Mater. Corros., 2017, 68: 197
3 Evans H E, Hilton D A, Holm R A, et al. The influence of a titanium nitride dispersion on the oxidation behavior of 20%Cr-25%Ni stainless steel [J]. Oxid. Met., 1978, 12: 473
doi: 10.1007/BF00603805
4 Bennett M J, Desport J A, Labun P A. Analytical electron microscopy of a selective oxide scale formed on 20% Cr-25% Ni-Nb stainless steel [J]. Oxid. Met., 1984, 22: 291
doi: 10.1007/BF00656580
5 Liu J, Pan Q C, Che C, et al. Effect of Si content on oxidation resistance of iron-based superalloy [J]. Foundry Technol., 2017, 38: 1547
刘 杰, 潘晴川, 车 畅 等. Si含量对铁基高温合金抗氧化性能的影响 [J]. 铸造技术, 2017, 38: 1547
6 Zhao K, Li X Q, Wang M T, et al. Corrosion behavior of four corrosion-resistant alloys in ultra-supercritical boiler flue gas condensate [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 493
赵 康, 李晓琦, 王铭滔 等. 4种耐蚀合金在超超临界锅炉烟气冷凝液中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 493
7 Liang Z Y, Xu Y M, Wang S, et al. Corrosion behavior of heat-resistant alloys in high temperature CO2 environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 613
梁志远, 徐一鸣, 王 硕 等. 高等级合金CO2环境下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 613
doi: 10.11902/1005.4537.2021.210
8 Pei S B, Wan D Y, Zhou P, et al. Research progress on preparation, microstructure, oxidation-and corrosion-resistance of high-entropy alloy coatings [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 873
裴书博, 万冬阳, 周 萍 等. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 873
doi: 10.11902/1005.4537.2021.249
9 Meier G H, Jung K, Mu N, et al. Effect of alloy composition and exposure conditions on the selective oxidation behavior of ferritic Fe-Cr and Fe-Cr-X alloys [J]. Oxid. Met., 2010, 74: 319
doi: 10.1007/s11085-010-9215-5
10 Atkinson A, Taylor R I. The diffusion of 63Ni along grain boundaries in nickel oxide [J]. Philos. Mag., 1981, 43A: 979
11 Huntz A M, Bague V, Beauplé G, et al. Effect of silicon on the oxidation resistance of 9% Cr steels [J]. Appl. Surf. Sci., 2003, 207: 255
doi: 10.1016/S0169-4332(02)01505-2
12 Mikkelsen L, Linderoth S, Bilde-Sørensen J B. The effect of silicon addition on the high temperature oxidation of a Fe-Cr alloy [J]. Mater. Sci. Forum, 2004, 461-464: 117
doi: 10.4028/www.scientific.net/MSF.461-464
13 Evans H E, Hilton D A, Holm R A, et al. Influence of silicon additions on the oxidation resistance of a stainless steel [J]. Oxid. Met., 1983, 19: 1
doi: 10.1007/BF00656225
14 Kumar A, Douglass D L. Modification of the oxidation behavior of high-purity austenitic Fe-14Cr-14Ni by the addition of silicon [J]. Oxid. Met., 1976, 10: 1
doi: 10.1007/BF00611695
15 Stott F H, Gabriel G J, Wei F I, et al. The development of silicon-containing oxides during the oxidation of iron-chromium-base alloys [J]. Mater. Corros., 1987, 38: 521
16 Schütze M, Renusch D, Schorr M. Parameters determining the breakaway oxidation behaviour of ferritic martensitic 9%Cr steels in environments containing H2O [J]. Corros. Eng., Sci. Technol., 2004, 39: 157
17 Nguyen T D, Zhang J Q, Young D J. Effects of silicon on high temperature corrosion of Fe-Cr and Fe-Cr-Ni alloys in carbon dioxide [J]. Oxid. Met., 2014, 81: 549
doi: 10.1007/s11085-013-9467-y
18 Nguyen T D, Zhang J, Young D J. Effect of Si on corrosion of Fe-Cr and Fe-Cr-Ni alloys in wet CO2 gas [J]. Corros. Sci. Technol., 2015, 14: 127
doi: 10.14773/cst.2015.14.3.127
19 Aye K K, Nguyen T D, Zhang J Q, et al. Effect of silicon on corrosion of Fe-20Cr and Fe-20Cr-20Ni alloys in wet CO2 with and without HCl at 650oC [J]. Corros. Sci., 2021, 179: 109096
doi: 10.1016/j.corsci.2020.109096
20 Col A, Parry V, Pascal C. Oxidation of a Fe-18Cr-8Ni austenitic stainless steel at 850oC in O2: microstructure evolution during breakaway oxidation [J]. Corros. Sci., 2017, 114: 17.
doi: 10.1016/j.corsci.2016.10.029
21 Young D J. High Temperature Oxidation and Corrosion of Metals [M]. 2nd ed. Amsterdam: Elsevier, 2016
22 Liu L L, Liu S, Guo Q Q, et al. Effects of Cr addition and a magnetron sputtered film on the oxidation-sulfidation behavior of Fe-xCr-5Si alloys in H2-CO2-H2S mixture at 800oC [J]. J. Electrochem. Soc., 2017, 164: C269
doi: 10.1149/2.0751706jes
23 Croll J E, Wallwork G R. The design of iron-chromium-nickel alloys for use at high temperatures [J]. Oxid. Met., 1969, 1: 55
doi: 10.1007/BF00609924
24 Croll J E. The High Temperature Oxidation of Iron-Chromium-Nickel Alloys [M]. University of New South Wales, 1971
25 Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys [J]. J. Electrochem. Soc., 1952, 99: 369
doi: 10.1149/1.2779605
26 Basu S N, Yurek G J. Effect of alloy grain size and silicon content on the oxidation of austenitic Fe-Cr-Ni-Mn-Si alloys in pure O2 [J]. Oxid. Met., 1991, 36: 281
doi: 10.1007/BF00662967
27 Liu L L. High temperature corrosion in oxidizing and/or sulfidizing atmospheres of Fe-xSi alloys and effect of Cr addition with grain refinement [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2014
刘兰兰. Fe-xSi合金的高温氧化、氧化-硫化腐蚀及第三组织元和微晶化的影响 [D]. 沈阳: 中国科学院金属研究所, 2014
28 Ye C J, Shen J N, Li T F. Synergetic effect of cerium and silicon on the high-temperature oxidation behavior of Ni-Cr alloys [J]. J. Chin. Soc. Corros. Prot., 1993, 13: 229
叶长江, 沈嘉年, 李铁藩. 合金元素硅和铈对镍铬合金高温氧化行为的协同作用 [J]. 中国腐蚀与防护学报, 1993, 13: 229
[1] WANG Shuang, WANG Zixing, CHENG Xiaonong, LUO Rui. Effect of Rare Earth La on High Temperature Oxidation of Cobalt-based Superalloy GH5188 at 1100oC[J]. 中国腐蚀与防护学报, 2024, 44(1): 221-228.
[2] LI Danhong, YANG Tengxun, SUN Tianxiang, LI Xinglinmao, MA Chengcheng, ZHANG Yue, CHEN Shougang. Preparation and Anti-corrosion Properties of Silica Aerogel-modified Polyurethane Composite Coatings[J]. 中国腐蚀与防护学报, 2024, 44(1): 167-174.
[3] REN Yan, ZHANG Xintao, GAI Xin, XU Jingjun, ZHANG Wei, CHEN Yong, LI Meishuan. High Temperature Oxidation Behavior of Quaternary (Cr2/3Ti1/3)3AlC2 MAX Ceramic in Air and Steam[J]. 中国腐蚀与防护学报, 2023, 43(6): 1284-1292.
[4] DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[5] LIU Huanhuan, LIU Guangming, LI Futian, MENG Lingqi, XIAHOU Junzhao, GU Jialei. Oxidation Behavior of TP439 Stainless Steel in Water Vapor at 800 ℃[J]. 中国腐蚀与防护学报, 2023, 43(2): 377-383.
[6] REN Yanjie, LV Yunlei, DAI Ting, GUO Xiaohui, CHEN Jian, ZHOU Libo, QIU Wei, NIU Yan. Oxidation Behavior of Ternary Alloys Co-20Ni-3Al and Co-20Ni-5Al in 105 Pa O2 Atmosphere at 800-1000 ℃[J]. 中国腐蚀与防护学报, 2022, 42(6): 995-1001.
[7] XIE Leipeng, CHEN Minghui, WANG Jinlong, WANG Fuhui. High Temperature Oxidation Behavior of Ultrafine Grained ODS Nickel-based Superalloy Prepared by Spark Plasma Sintering[J]. 中国腐蚀与防护学报, 2022, 42(5): 709-716.
[8] PEI Shubo, WAN Dongyang, ZHOU Ping, CAO Guoqin, HU Junhua. Research Progress on Preparation, Microstructure, Oxidation- and Corrosion-resistance of High-entropy Alloy Coatings[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[9] ZHANG Qin, LIANG Taosha, WANG Wen, ZHAO Langlang, JIANG Yuefeng. Oxidation Kinetics and Microstructure Evolution of Nanocrystalline Ni-12Cr Alloy at 800 ℃[J]. 中国腐蚀与防护学报, 2022, 42(5): 733-742.
[10] LI Ling, DU Xiran, QU Pinquan, LI Jiancheng, WANG Jinlong, GU Yan, ZHANG Jia, CHEN Minghui, WANG Fuhui. Effect of Vacuum Heat Treatment on Oxidation Behavior of Arc Ion Plated NiCoCrAlY Coatings[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[11] QIU Panpan, SHU Xiaoyong, HU Linli, YANG Tao, FANG Yuqing. Research Progress of Pt-modified Aluminide Coating on Nickel-base Superalloys[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[12] YANG Sheng, ZHANG Huijie, XIANG Wuyuan, OUYANG Tao, XIAO Fen, ZHOU Hui. Effect of Post Surface Treatment of Micro-arc Oxidation Films/TC4 Ti-alloy on Their Morphology and Galvanic Corrosion Performance[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[13] ZHANG Chenyang, LIU Huicong, HAN Dongxiao, ZHU Liqun, LI Weiping. Preparation of Micron SiC/Ni-Co-P Composite Coatings and Influencing Factors[J]. 中国腐蚀与防护学报, 2021, 41(5): 579-584.
[14] FU Haibo, LIU Xiaoru, SUN Yuan, CAO Dali. Corrosion Resistance of Epoxy Resin/recrystallized Silicon Carbide Composite[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[15] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
No Suggested Reading articles found!