Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (5): 1064-1070    DOI: 10.11902/1005.4537.2022.319
Current Issue | Archive | Adv Search |
Effect of Flow Velocity on Flow Accelerated Corrosion Rate of Carbon Steel Elbow
PAN Dailong, SI Xiaodong(), LV Jinhong
School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, China
Download:  HTML  PDF(4590KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Carbon steel is the main material for power plants, oil and gas pipelines. Flow accelerated corrosion is the main factor causing pipeline failure in power plants, especially the secondary circuit pipeline system of the pressurized water reactor (PWR) nuclear power plant. In this paper, a home-made flow accelerated corrosion test rig and array electrode technology was used to study the effect of different flow rates on the flow accelerated corrosion rate distribution of 20# carbon steel elbow at 120 °C. The correlation between hydrodynamic parameters and corrosion rate was analyzed based on hydrodynamic simulation. The results show that the maximum corrosion current density is located at the external bending side of the elbow at different flow rates. With the increase of flow velocity, the flow accelerated corrosion rate increased significantly. In addition, the comparison of experimental data and simulation results show that the radial local velocity component can be used as an important parameter to predict the flow accelerated corrosion rate of carbon steel elbow. The empirical formula between the radial local velocity component and the corrosion rate was obtained by fitting based on the least square method. This research can be applied to design optimization, operation monitoring and maintenance strategy formulation of carbon steel elbow transport lines in thermal power, nuclear power and chemical industries.

Key words:  elbow      flow accelerated corrosion      electrochemistry      numerical simulation      hydrodynamics     
Received:  17 October 2022      32134.14.1005.4537.2022.319
ZTFLH:  TG174  
Fund: Innovation and Entrepreneurship Program of Jiangsu Province(JSSCBS20210994)
Corresponding Authors:  SI Xiaodong, E-mail: Xiaod_Si@163.com   

Cite this article: 

PAN Dailong, SI Xiaodong, LV Jinhong. Effect of Flow Velocity on Flow Accelerated Corrosion Rate of Carbon Steel Elbow. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1064-1070.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.319     OR     https://www.jcscp.org/EN/Y2023/V43/I5/1064

Fig.1  High temperature loop test system diagram
Fig.2  Schematic diagram of array electrode installation (a) and measuring point distribution (b) in test section
Fig.3  Nyquist plots of typical array electrodes in elbow section at 1 m/s (a), 2 m/s (b), 3 m/s (c) and 4 m/s (d)
Fig.4  Equivalent circuit used for EIS fitting
Fig.5  Charge transfer resistance (a) and corrosion current density (b) of array working electrode in elbow test section at different flow rates
PositionRct / Ω·cm2Icorr / μA·cm-2
12341234
A114501375120082017.7218.6821.4131.33
A313901350116175018.4819.0322.1234.25
A515001400125092517.1218.3520.5527.77
B117001550122691015.1116.5720.9628.23
B41300115092273019.7622.3427.8735.19
B716001450124093016.0517.7220.7227.62
Table 1  Charge transfer resistance and corrosion current density at different flow rates of the typical position array working electrode
Fig.6  Comparison of velocity (a), wall shear (b), turbulence kinetic energy (c), axial local velocity (d) and corrosion current density
Fig.7  Comparison of radial local velocity and corrosion current density between intrados (a) and extrados (b)
Fig.8  Comparison of radial local velocity and corrosion current density at 1 m/s (a), 2 m/s (b), 3 m/s (c) and 4 m/s (d)
Fig.9  Fitting relationship between corrosion current density and Vr at different flow rates in elbow test section
1 Zhang G J. Research on the mechanism of flow accelerated corrosion and its countermeasures of water-steam system in power station [D]. Baoding: North China Electric Power University, 2014
张国军. 电站汽水系统流动加速腐蚀机理及对策研究 [D]. 保定: 华北电力大学, 2014
2 Lu X F, Zhu X L, Ling X. A novel model for predicting flow accelerated corrosion rate in reducer [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 431
陆晓峰, 朱晓磊, 凌 祥. 一种预测异径管流动加速腐蚀速率的新模型 [J]. 中国腐蚀与防护学报, 2011, 31: 431
3 Jiang S, Chai F, Su H, et al. Influence of chromium on the flow-accelerated corrosion behavior of low alloy steels in 3.5% NaCl solution [J]. Corros. Sci., 2017, 123: 217
doi: 10.1016/j.corsci.2017.04.024
4 Yang X Y, Guan L, Li Y, et al. Numerical simulation and experimental study on erosion-corrosion of square elbow based on orthogonal test [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 979
杨湘愚, 关 蕾, 李 雨 等. 基于正交实验的90°弯管冲刷腐蚀数值模拟及实验研究 [J]. 中国腐蚀与防护学报, 2022, 42: 979
doi: 10.11902/1005.4537.2021.325
5 Kim S, Kim J W, Kim J H. Enhancement of corrosion resistance in carbon steels using nickel-phosphorous/titanium dioxide nanocomposite coatings under high-temperature flowing water [J]. J. Alloy. Compd., 2017, 698: 267
doi: 10.1016/j.jallcom.2016.12.027
6 Ge P L, Zeng W G, Xiao W W, et al. Effect of applied stress and medium flow on corrosion behavior of carbon steel in H2S/CO2 coexisting environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 271
葛鹏莉, 曾文广, 肖雯雯 等. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 271
doi: 10.11902/1005.4537.2020.025
7 Lin T, Zhou K Y, Si X D. Research progress on flow-accelerated corrosion of power plant and contermeasures [J]. Corros. Sci. Prot. Technol., 2018, 30: 543
林 彤, 周克毅, 司晓东. 电厂机组流动加速腐蚀研究进展及防护措施 [J]. 腐蚀科学与防护技术, 2018, 30: 543
8 Wang K, Nan C H, Lu J L. Mechanism of hydrodynamic process in flow corrosion behavior [J]. Chem. Ind. Eng. Prog., 2020, 39(suppl. 2) : 8
王 凯, 南翠红, 卢金玲. 流体动力学过程在流动腐蚀行为中的作用机制 [J]. 化工进展, 2020, 39(): 8
9 Pan D L, Si X D, Zhang J, et al. Experimental study on flow-accelerated corrosion at elbow of carbon steel at different temperatures [J]. Therm. Power Gener., 2022, 51(7): 110
潘代龙, 司晓东, 张 静 等. 碳钢弯管段在不同温度下流动加速腐蚀性能实验研究 [J]. 热力发电, 2022, 51(7): 110
10 Dooley R B. Flow-accelerated corrosion in fossil and combined cycle/HRSG plants [J]. Power Plant Chem., 2008, 10: 68
11 Chen H L, Ma L, Huang G S, et al. Effect of dissolved oxygen and flow rate of seawater on film formation of B30 Cu-Ni alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 724
陈翰林, 马 力, 黄国胜 等. 溶解氧和流速对B30铜镍合金在海水中成膜的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 724
doi: 10.11902/1005.4537.2021.260
12 Zhang G Y, Gu Y, Shao J. Cause analysis on FAC failures of steam/water piping in secondary loop of PWR power plants and the countermeasures [J]. J. Chin. Soc. Power Eng., 2012, 32: 170
张桂英, 顾 宇, 邵 杰. 核电站汽水管道流动加速腐蚀的影响因素分析及对策 [J]. 动力工程学报, 2012, 32: 170
13 Fujiwara K, Domae M, Yoneda K, et al. Model of physico-chemical effect on flow accelerated corrosion in power plant [J]. Corros. Sci., 2011, 53: 3526
doi: 10.1016/j.corsci.2011.06.027
14 Talaat K, Hassan M M, Cakez C, et al. Design of specimen holders for flow accelerated corrosion experiments in molten lead with numerical evaluation of pressure losses [J]. Nucl. Eng. Des., 2021, 385: 111522
doi: 10.1016/j.nucengdes.2021.111522
15 Bandeira R M, van Drunen J, Garcia A C, et al. Influence of the thickness and roughness of polyaniline coatings on corrosion protection of AA7075 aluminum alloy [J]. Electrochim. Acta, 2017, 240: 215
doi: 10.1016/j.electacta.2017.04.083
16 Liu H W, Gu T Y, Asif M, et al. The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria [J]. Corros. Sci., 2017, 114: 102
doi: 10.1016/j.corsci.2016.10.025
17 Zeng L, Zhang G A, Guo X P. Erosion–corrosion at different locations of X65 carbon steel elbow [J]. Corros. Sci., 2014, 85: 318
doi: 10.1016/j.corsci.2014.04.045
18 Si X D, Si H T, Li M Y, et al. Investigation of corrosion behavior at elbow by array electrode and computational fluid dynamics simulation [J]. Mater. Corros., 2020, 71: 1637
19 Utanohara Y, Murase M. Influence of flow velocity and temperature on flow accelerated corrosion rate at an elbow pipe [J]. Nucl. Eng. Des., 2019, 342: 20
doi: 10.1016/j.nucengdes.2018.11.022
20 Dean W R. Fluid motion in a curved channel [J]. Proc. Roy. Soc. Lond., 1928, 121A: 402
21 Si X D, Zhang R, Xu Q, et al. Effects of local velocity components on flow-accelerated corrosion at 90° elbow [J]. Mater. Res. Express, 2019, 6: 016557
[1] KOU Jie, REN Zhe. Research Progress of Regional Cathodic Protection Potential Distribution of Tank Floor Based on Numerical Calculation[J]. 中国腐蚀与防护学报, 2023, 43(4): 871-881.
[2] XIA Xiaojian, WAN Xinyuan, CHEN Yunxiang, HAN Jiceng, CHEN Yiyang, YAN Kanghua, LIN Deyuan, CHEN Tianpeng, ZUO Xiaomei, SUN Baozhuang, CHENG Xuequn. Effect of Heat Treatments on Corrosion Behavior of 3Cr Low Carbon Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
[3] SHANG Xiaobiao, XIAO Renyou, LI Jiajian, ZHANG Zhihao. Improvement of Anode Corrosion Uniformity of Copper Electrolysis Cell Based on Multi-physical Field Coupling Theory[J]. 中国腐蚀与防护学报, 2023, 43(3): 663-670.
[4] HUANG Jiazhen, HUANG Tao, YANG Lijing, JI Dengping, DING He, WEI Yi, SONG Zhenlun. Electrochemical Properties and Offshore Corrosion Behavior of SAF 2304 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[5] GUO Zihan, ZHANG Jun, LI Hui. Optimal Design for Anti-erosion of Pneumatic Conveying Elbow with Rib Structure[J]. 中国腐蚀与防护学报, 2023, 43(3): 525-534.
[6] YANG Xiangyu, GUAN Lei, LI Yu, ZHANG Yongkang, WANG Guan, YAN Dejun. Numerical Simulation and Experimental Study on Erosion-corrosion of Square Elbow Based on Orthogonal Test[J]. 中国腐蚀与防护学报, 2022, 42(6): 979-987.
[7] PENG Yizhan, GONG Fuyuan, ZHAO Yuxi. Distribution of Stray Current Induced Corrosion of Reinforced Bars Within Concrete Based on Electric Field Analysis and Experiment with Transparent Imitated Concrete[J]. 中国腐蚀与防护学报, 2022, 42(5): 813-818.
[8] ZHAO Guoxian, WANG Yingchao, ZHANG Siqi, SONG Yang. Influence Mechanism of H2S/CO2-charging on Corrosion of J55 Steel in an Artificial Solution[J]. 中国腐蚀与防护学报, 2022, 42(5): 785-790.
[9] FENG Li, ZHANG Shengtao, ZHENG Siyuan, HU Zhiyong, ZHU Hailin, MA Xuemei. Effect of Halogen Anions on Corrosion Inhibition of Ionic Liquids[J]. 中国腐蚀与防护学报, 2022, 42(5): 791-797.
[10] ZHANG Haibing, ZHANG Yihan, MA Li, XING Shaohua, DUAN Tigang, YAN Yonggui. Electrochemical Performance of Sacrificial Anodes in Alternating Depth and Shallowness of Seawater Environments[J]. 中国腐蚀与防护学报, 2022, 42(5): 867-872.
[11] WANG Bingqin, ZHANG Xiaolian, YONG Xingyue, ZHOU Huan, GAO Xinhua. Numerical Simulation of Galvanic Corrosion of TP2Y Copper Pipes Coupled with Steel Pipes in a Seawater Pipe Systems of Ships[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[12] WANG Zhongqi, XU Chunxiang, YANG Lijing, TIAN Linhai, HUANG Tao, SHI Yixuan, YANG Wenfu. Microstructure and Corrosion Resistance of Medical Degradable Mg-2Y-1Zn-xZr Alloy[J]. 中国腐蚀与防护学报, 2022, 42(1): 113-119.
[13] DING Cong, ZHANG Jinling, YU Yanchong, LI Yelei, WANG Shebin. Corrosion Kinetics of A572Gr.65 Steel in Different Simulated Soil Solutions[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[14] WANG Laibin, LIU Xiahe, WANG Mei, GAO Junjie. Research Status and Progress on Growth Kinetics of Trivalent Chromium-based Conversion Film[J]. 中国腐蚀与防护学报, 2021, 41(5): 571-578.
[15] DING Qingmiao, GAO Yuning, HOU Wenliang, QIN Yongxiang. Influence of Cl- Concentration on Corrosion Behavior of Reinforced Concrete in Soil[J]. 中国腐蚀与防护学报, 2021, 41(5): 705-711.
No Suggested Reading articles found!