|
|
Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments |
WANG Changgang1, DANIEL Enobong Felix1, LI Chao1, DONG Junhua1( ), YANG Hua2, ZHANG Dongjiu2( ) |
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.Key Laboratory of Space Launching Site Reliability, Xichang Satellite Launch Center, Haikou 571126, China |
|
|
Abstract Through a comparative study of the corrosion characteristics, corrosion products, and electrochemical polarization of carbon steel- and stainless steel-bolt fasteners in a Cl- containing NaCl solution, which aims to simulate offshore atmospheric environment. For carbon steel fasteners, the occurrence of rust scale can induce an extra IR drop, weakened the polarization effect of the cathodic area to the anodic crevice area, and the difference in oxygen supply led to more severe corrosion in the exposed thread area, mainly uniform corrosion. For stainless steel fasteners, the lack of oxygen in the environment led to the degradation of the passivation film performance in the thread crevice area, and the polarization effect of the exposed screw area to the thread crevice area, thus resulted in more severe corrosion in the crevice area, mainly pitting corrosion. Differentiated corrosion protection strategies were proposed for carbon steel and stainless steel fasteners in marine environments based on their distinct corrosion mechanisms.
|
Received: 09 May 2023
32134.14.1005.4537.2023.151
|
|
Fund: Youth Innovation Promotion Association of the Chinese Academy of Sciences(2019193);Youth Innovation Promotion Association of the Chinese Academy of Sciences(KGFZD-135-19-02) |
Corresponding Authors:
DONG Junhua, E-mail: jhdong@imr.ac.cn;ZHANG Dongjiu, E-mail:zhangdongjiu923@sohu.con
|
1 |
Hosoya N, Niikura T, Hashimura S, et al. Axial force measurement of the bolt/nut assemblies based on the bending mode shape frequency of the protruding thread part using ultrasonic modal analysis [J]. Measurement, 2020, 162: 107914
doi: 10.1016/j.measurement.2020.107914
|
2 |
Revie R W, Uhlig H H. Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering [M]. 4th ed. Hoboken: John Wiley & Sons Inc, 2008
|
3 |
Elshawesh F, Abusowa K, Mahfud H, et al. Stress-corrosion cracking and galvanic corrosion of internal bolts from a multistage water injection pump [J]. J. Fail. Anal. Prev., 2008, 8: 48
doi: 10.1007/s11668-007-9109-2
|
4 |
Hagarová M, Jakubéczyová D, Baranová G, et al. Determination of bimetallic corrosion risk using an electrochemical method [J]. Mater. Sci. Forum, 2019, 960: 62
doi: 10.4028/www.scientific.net/MSF.960
|
5 |
McCafferty E. Electrochemical behavior of iron within crevices in nearly neutral chloride solutions [J]. J. Electrochem. Soc., 1974, 121: 1007
doi: 10.1149/1.2401968
|
6 |
Al-sherrawi M H, Lyashenko V, Edaan E M, et al. Corrosion of metal construction structures [J]. Int. J. Civ. Eng. Technol., 2018, 9: 437
|
7 |
Meikle T, Tadolini S C, Sainsbury B A, et al. Laboratory and field testing of bolting systems subjected to highly corrosive environments [J]. Int. J. Min. Sci. Technol., 2017, 27: 101
doi: 10.1016/j.ijmst.2016.11.017
|
8 |
Radouani R, Echcharqy Y, Essahli M. Numerical simulation of galvanic corrosion between carbon steel and low alloy steel in a bolted joint [J]. Int. J. Corros., 2017: 6174904
|
9 |
Rees E E, McPhail D S, Ryan M P, et al. Low energy SIMS characterisation of ultra thin oxides on ferrous alloys [J]. Appl. Surf. Sci., 2003, 203/204: 660
|
10 |
Niu L B, Okano K, Izumi S, et al. Effect of chloride and sulfate ions on crevice corrosion behavior of low-pressure steam turbine materials [J]. Corros. Sci., 2018, 132: 284
doi: 10.1016/j.corsci.2017.12.017
|
11 |
Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corros. Sci., 2009, 51: 997
doi: 10.1016/j.corsci.2009.02.009
|
12 |
Udoh I I, Shi H W, Liu F C, et al. Synergistic effect of 3-amino-1,2,4-triazole-5-thiol and cerium chloride on corrosion inhibition of AA2024-T3 [J]. J. Electrochem. Soc., 2019, 166: C185
doi: 10.1149/2.0621906jes
|
13 |
Muzghi I A. Fastener corrosion in Arabian Gulf offshore installations [A]. EUROCORR 2004: Long Term Prediction and Modeling of Corrosion [C]. Nice, 2004: 1
|
14 |
Aziz N, Craig P, Nemcik J, et al. Rock bolt corrosion-an experimental study [J]. Min. Technol., 2014, 123: 69
doi: 10.1179/1743286314Y.0000000060
|
15 |
Yang X K, Zhang L W, Zhang S Y, et al. Atmospheric corrosion behaviour and degradation of high-strength bolt in marine and industrial atmosphere environments [J]. Int. J. Electrochem. Sci., 2021, 16: 151015
doi: 10.20964/2021.01.68
|
16 |
Shah J K, Braga H B F, Mukherjee A, et al. Ultrasonic monitoring of corroding bolted joints [J]. Eng. Failure Anal., 2019, 102: 7
doi: 10.1016/j.engfailanal.2019.04.016
|
17 |
Gedge G. Structural uses of stainless steel-buildings and civil engineering [J]. J. Constr. Steel Res., 2008, 64: 1194
doi: 10.1016/j.jcsr.2008.05.006
|
18 |
Li X G, Zhang D W, Liu Z, et al. Materials science: share corrosion data [J]. Nature, 2015, 527: 441
doi: 10.1038/527441a
|
19 |
Daniel E F, Dong J H, Li X F, et al. Corrosion behaviour of carbon steel fasteners in neutral chloride solution [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 563
doi: 10.1007/s40195-021-01284-4
|
20 |
Daniel E F, Wang C G, Li C, et al. Synergistic effect of crevice corrosion and galvanic coupling on 304SS fasteners degradation in chloride environments [J]. npj Mater. Degrad., 2023, 7: 11
doi: 10.1038/s41529-023-00327-8
|
21 |
Daniel E F, Li C, Wang C G, et al. Insights into the characteristics of corrosion products formed on the contact and exposed regions of C1045 steel bolt and nut fasteners exposed to aqueous chloride environments [J]. J. Mater. Sci. Technol., 2023, 135: 250
doi: 10.1016/j.jmst.2022.06.037
|
22 |
Shi L J, Yang X Y, Song Y W, et al. Effect of corrosive media on galvanic corrosion of complicated tri-metallic couples of 2024 Al alloy/Q235 mild steel/304 stainless steel [J]. J. Mater. Sci. Technol., 2019, 35: 1886
doi: 10.1016/j.jmst.2019.04.022
|
23 |
Veneranda M, Aramendia J, Bellot-Gurlet L, et al. FTIR spectroscopic semi-quantification of iron phases: a new method to evaluate the protection ability index (PAI) of archaeological artefacts corrosion systems [J]. Corros. Sci., 2018, 133: 68
doi: 10.1016/j.corsci.2018.01.016
|
24 |
Refait P, Grolleau A M, Jeannin M, et al. Corrosion of mild steel at the seawater/sediments interface: mechanisms and kinetics [J]. Corros. Sci., 2018, 130: 76
doi: 10.1016/j.corsci.2017.10.016
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|