Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (4): 737-745    DOI: 10.11902/1005.4537.2023.151
Current Issue | Archive | Adv Search |
Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments
WANG Changgang1, DANIEL Enobong Felix1, LI Chao1, DONG Junhua1(), YANG Hua2, ZHANG Dongjiu2()
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.Key Laboratory of Space Launching Site Reliability, Xichang Satellite Launch Center, Haikou 571126, China
Download:  HTML  PDF(4183KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Through a comparative study of the corrosion characteristics, corrosion products, and electrochemical polarization of carbon steel- and stainless steel-bolt fasteners in a Cl- containing NaCl solution, which aims to simulate offshore atmospheric environment. For carbon steel fasteners, the occurrence of rust scale can induce an extra IR drop, weakened the polarization effect of the cathodic area to the anodic crevice area, and the difference in oxygen supply led to more severe corrosion in the exposed thread area, mainly uniform corrosion. For stainless steel fasteners, the lack of oxygen in the environment led to the degradation of the passivation film performance in the thread crevice area, and the polarization effect of the exposed screw area to the thread crevice area, thus resulted in more severe corrosion in the crevice area, mainly pitting corrosion. Differentiated corrosion protection strategies were proposed for carbon steel and stainless steel fasteners in marine environments based on their distinct corrosion mechanisms.

Key words:  bolt fastener      carbon steel      stainless steel      galvanic corrosion      crevice corrosion     
Received:  09 May 2023      32134.14.1005.4537.2023.151
ZTFLH:  TG172  
Fund: Youth Innovation Promotion Association of the Chinese Academy of Sciences(2019193);Youth Innovation Promotion Association of the Chinese Academy of Sciences(KGFZD-135-19-02)
Corresponding Authors:  DONG Junhua, E-mail: jhdong@imr.ac.cn;ZHANG Dongjiu, E-mail:zhangdongjiu923@sohu.con   

Cite this article: 

WANG Changgang, DANIEL Enobong Felix, LI Chao, DONG Junhua, YANG Hua, ZHANG Dongjiu. Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 737-745.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.151     OR     https://www.jcscp.org/EN/Y2023/V43/I4/737

Fig.1  Schematic diagram of bolt fastener assembly[19]: (a) bolt fastener, (b) experimental model of electrochemical device assembled with simulated screw and nut
Fig.2  Macroscopic images of C45 carbon steel bolt and nut assembly before immersion (a, b) and after 28 d of immersion in 0.06 mol/L NaCl solution (c-f): (a) coupled bolt with nut, (b) uncoupled bolt, (c) coupled bolt with nut, (d) uncoupled bolt, (e) region A exposed to the bulk solution, (f) region B (bolt and nut contact) [19]
Fig.3  Surface morphologies of the 304 stainless steel threaded specimen[20]: (a) as-received specimen, (b) exposed region after corrosion test, (c) crevice region after corrosion test, (d) enlarged view of the crevice region, (e) sampled area at the flank, (f) sampled area at the root
Fig.4  Cross-section mapping of Fe and O distribution in the rust layer formed on the metal-oxide interface at the exposed and crevice regions of planar fasteners, respectively [21]
Fig.5  XRD patterns for the corrosion products formed on the fastener surfaces at the exposed region (a) and contact region (b), respectively (A=akaganeite; G=goethite; L=lepidocrocite; M=magnetite; H=halite) [21]
Fig.6  XPS spectra obtained at the exposed surface and crevice surface as a function of sputtering times [20]: (a) Fe 2p, (b) Cr 2p, (c) Ni 2p, (d) O 1s, (e) Cl 2p
Fig.7  XPS depth profile showing the percentage element content of the oxide film formed on the surfaces of 304 stainless steel after 30 d of immersion in the test media as a function of depth (nm) [20]: (a) exposed surface, (b) crevice surface
Fig.8  Time-dependent plots of galvanic current density observed in the mode of electrical connection between exposed area and contact area [19]
Fig.9  Average current density vs time profile of the crevice/exposed galvanic couple (a) and polarization curves (b) [20]
Fig.10  Galvanic current density of the bolt/nut couple as a function of area ratio (Sc/Sa) [19]: (a) C45 carbon steel, (b) 304 stainless steel
Fig.11  Schematic diagram of corrosion process and corrosion mechanism of carbon steel fasteners [21]
Fig.12  Schematic illustration of the proposed mechanism of corrosion in 304 stainless steel fasteners at coupled conditions (a), isolated conditions (b) and time-dependent evolution (c) of 304 stainless steel fastener corrosion process [20]
1 Hosoya N, Niikura T, Hashimura S, et al. Axial force measurement of the bolt/nut assemblies based on the bending mode shape frequency of the protruding thread part using ultrasonic modal analysis [J]. Measurement, 2020, 162: 107914
doi: 10.1016/j.measurement.2020.107914
2 Revie R W, Uhlig H H. Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering [M]. 4th ed. Hoboken: John Wiley & Sons Inc, 2008
3 Elshawesh F, Abusowa K, Mahfud H, et al. Stress-corrosion cracking and galvanic corrosion of internal bolts from a multistage water injection pump [J]. J. Fail. Anal. Prev., 2008, 8: 48
doi: 10.1007/s11668-007-9109-2
4 Hagarová M, Jakubéczyová D, Baranová G, et al. Determination of bimetallic corrosion risk using an electrochemical method [J]. Mater. Sci. Forum, 2019, 960: 62
doi: 10.4028/www.scientific.net/MSF.960
5 McCafferty E. Electrochemical behavior of iron within crevices in nearly neutral chloride solutions [J]. J. Electrochem. Soc., 1974, 121: 1007
doi: 10.1149/1.2401968
6 Al-sherrawi M H, Lyashenko V, Edaan E M, et al. Corrosion of metal construction structures [J]. Int. J. Civ. Eng. Technol., 2018, 9: 437
7 Meikle T, Tadolini S C, Sainsbury B A, et al. Laboratory and field testing of bolting systems subjected to highly corrosive environments [J]. Int. J. Min. Sci. Technol., 2017, 27: 101
doi: 10.1016/j.ijmst.2016.11.017
8 Radouani R, Echcharqy Y, Essahli M. Numerical simulation of galvanic corrosion between carbon steel and low alloy steel in a bolted joint [J]. Int. J. Corros., 2017: 6174904
9 Rees E E, McPhail D S, Ryan M P, et al. Low energy SIMS characterisation of ultra thin oxides on ferrous alloys [J]. Appl. Surf. Sci., 2003, 203/204: 660
10 Niu L B, Okano K, Izumi S, et al. Effect of chloride and sulfate ions on crevice corrosion behavior of low-pressure steam turbine materials [J]. Corros. Sci., 2018, 132: 284
doi: 10.1016/j.corsci.2017.12.017
11 Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corros. Sci., 2009, 51: 997
doi: 10.1016/j.corsci.2009.02.009
12 Udoh I I, Shi H W, Liu F C, et al. Synergistic effect of 3-amino-1,2,4-triazole-5-thiol and cerium chloride on corrosion inhibition of AA2024-T3 [J]. J. Electrochem. Soc., 2019, 166: C185
doi: 10.1149/2.0621906jes
13 Muzghi I A. Fastener corrosion in Arabian Gulf offshore installations [A]. EUROCORR 2004: Long Term Prediction and Modeling of Corrosion [C]. Nice, 2004: 1
14 Aziz N, Craig P, Nemcik J, et al. Rock bolt corrosion-an experimental study [J]. Min. Technol., 2014, 123: 69
doi: 10.1179/1743286314Y.0000000060
15 Yang X K, Zhang L W, Zhang S Y, et al. Atmospheric corrosion behaviour and degradation of high-strength bolt in marine and industrial atmosphere environments [J]. Int. J. Electrochem. Sci., 2021, 16: 151015
doi: 10.20964/2021.01.68
16 Shah J K, Braga H B F, Mukherjee A, et al. Ultrasonic monitoring of corroding bolted joints [J]. Eng. Failure Anal., 2019, 102: 7
doi: 10.1016/j.engfailanal.2019.04.016
17 Gedge G. Structural uses of stainless steel-buildings and civil engineering [J]. J. Constr. Steel Res., 2008, 64: 1194
doi: 10.1016/j.jcsr.2008.05.006
18 Li X G, Zhang D W, Liu Z, et al. Materials science: share corrosion data [J]. Nature, 2015, 527: 441
doi: 10.1038/527441a
19 Daniel E F, Dong J H, Li X F, et al. Corrosion behaviour of carbon steel fasteners in neutral chloride solution [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 563
doi: 10.1007/s40195-021-01284-4
20 Daniel E F, Wang C G, Li C, et al. Synergistic effect of crevice corrosion and galvanic coupling on 304SS fasteners degradation in chloride environments [J]. npj Mater. Degrad., 2023, 7: 11
doi: 10.1038/s41529-023-00327-8
21 Daniel E F, Li C, Wang C G, et al. Insights into the characteristics of corrosion products formed on the contact and exposed regions of C1045 steel bolt and nut fasteners exposed to aqueous chloride environments [J]. J. Mater. Sci. Technol., 2023, 135: 250
doi: 10.1016/j.jmst.2022.06.037
22 Shi L J, Yang X Y, Song Y W, et al. Effect of corrosive media on galvanic corrosion of complicated tri-metallic couples of 2024 Al alloy/Q235 mild steel/304 stainless steel [J]. J. Mater. Sci. Technol., 2019, 35: 1886
doi: 10.1016/j.jmst.2019.04.022
23 Veneranda M, Aramendia J, Bellot-Gurlet L, et al. FTIR spectroscopic semi-quantification of iron phases: a new method to evaluate the protection ability index (PAI) of archaeological artefacts corrosion systems [J]. Corros. Sci., 2018, 133: 68
doi: 10.1016/j.corsci.2018.01.016
24 Refait P, Grolleau A M, Jeannin M, et al. Corrosion of mild steel at the seawater/sediments interface: mechanisms and kinetics [J]. Corros. Sci., 2018, 130: 76
doi: 10.1016/j.corsci.2017.10.016
[1] MAO Feixiong, ZHOU Yuting, YAO Wenqing, SHEN Xiang, XIAO Long, LI Minghui. Growth Kinetics of Steady-state Passive Film on Type 304 Stainless Steel Based on Point Defect Model[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[2] BAI Yihan, ZHANG Hang, ZHU Zejie, WANG Jiangying, CAO Fahe. Research Progress of Monitoring Ion Concentration Variation of Micro-areas in Corrosion Crevice Interior[J]. 中国腐蚀与防护学报, 2023, 43(4): 828-836.
[3] NI Yumeng, YU Yingjie, YAN Hui, WANG Wei, LI Ying. Finite Element Study on Phase-selective Dissolution Mechanism of CuAl-NiC Abradable Seal Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[4] ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[5] HAO Wenkui, CHEN Xin, XU Lingling, HAN Yu, CHEN Yun, HUANG Luyao, ZHU Zhixiang, YANG Bingkun, WANG Xiaofang, ZHANG Qiang. Drawing of Atmospheric Corrosion Map of Carbon Steel and Galvanized Steel for Power Grid[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
[6] XIA Xiaojian, WAN Xinyuan, CHEN Yunxiang, HAN Jiceng, CHEN Yiyang, YAN Kanghua, LIN Deyuan, CHEN Tianpeng, ZUO Xiaomei, SUN Baozhuang, CHENG Xuequn. Effect of Heat Treatments on Corrosion Behavior of 3Cr Low Carbon Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
[7] LIANG Chaoxiong, LIANG Xiaohong, HAN Peide. Effect of a New Heat Treatment Process on B Elements Distribution, Second Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[8] HUANG Jiazhen, HUANG Tao, YANG Lijing, JI Dengping, DING He, WEI Yi, SONG Zhenlun. Electrochemical Properties and Offshore Corrosion Behavior of SAF 2304 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[9] WANG Yanfei, LI Yaozhou, HUANG Yuting, XIE Honglin, WU Weijie. Effect of Grain Size on Hydrogen Embrittlement of 304L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 494-506.
[10] XING Shaohua, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei, MA Li. Influence of Seawater Flow Speed on Galvanic Corrosion Behavior of B10/B30 Alloys Coupling[J]. 中国腐蚀与防护学报, 2023, 43(2): 391-398.
[11] HAN Ruizhu, JIA Jianwen, LI Yang, ZHANG Wei, XU Fanghong, HOU Lifeng, WEI Yinghui. Corrosion Behavior of Three Super Austenitic Stainless Steels in a Molten Salts Mixture at 650-750 ℃[J]. 中国腐蚀与防护学报, 2023, 43(2): 421-427.
[12] HE Zhihao, JIA Jianwen, LI Yang, ZHANG Wei, XU Fanghong, HOU Lifeng, WEI Yinghui. Passivation Behavior of Super Austenitic Stainless Steels in Simulated Flue Gas Desulfurization Condensate[J]. 中国腐蚀与防护学报, 2023, 43(2): 408-414.
[13] ZHANG Xiaoli, XUN Maonian, LIANG Xiaohong, ZHANG Caili, HAN Peide. Precipitation of Second Phase and Its Effect on Corrosion Resistance of Ce-containing S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.
[14] JIANG Fangfang, YUN Hong, PENG Li, ZHANG Yihao, LI Weishun, DAI Wenjing, WANG Baofeng, XU Qunjie. Protective Performance of NiFe-LDH Composite Coatings Modified by insitu Polymerized Polyaniline[J]. 中国腐蚀与防护学报, 2023, 43(2): 312-320.
[15] LIU Huanhuan, LIU Guangming, LI Futian, MENG Lingqi, XIAHOU Junzhao, GU Jialei. Oxidation Behavior of TP439 Stainless Steel in Water Vapor at 800 ℃[J]. 中国腐蚀与防护学报, 2023, 43(2): 377-383.
No Suggested Reading articles found!