Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (2): 408-414    DOI: 10.11902/1005.4537.2022.107
Current Issue | Archive | Adv Search |
Passivation Behavior of Super Austenitic Stainless Steels in Simulated Flue Gas Desulfurization Condensate
HE Zhihao1,2, JIA Jianwen1,2, LI Yang3, ZHANG Wei3, XU Fanghong3, HOU Lifeng1,2(), WEI Yinghui1,2
1.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2.Shanxi Engineering Research Center for Corrosion & Protection, Taiyuan 030024, China
3.State Key Laboratory of Advanced Stainless Steel, Taiyuan Iron and Steel (Group) Co. Ltd., Taiyuan 030003, China
Download:  HTML  PDF(3805KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The passivation behavior of austenitic stainless steels 254SMo, 904L and 316L in a simulated flue gas desulfurization condensate was studied by potentiodynamic polarization, potentiostatic polarization, Mott-Schottky and XPS methods. The results show that, with the increase of Mo content, the passive region becomes larger, the pitting potential becomes more positive, and the passivation current density decreases for the steels. Among others, 254SMo steel exhibits the best corrosion resistance, which means that 254SMo steel is more suitable to be used in flue gas desulfurization environment. At the same time, with the increase of pH value of the simulated solution, the flat-band potential of the three steels all shifts negatively, and the value of the donor density would be decreased for their passivation film, indicating that the defects of the passivation film decreased, and the corrosion resistance would be increased.

Key words:  super austenitic stainless steel      FGD      passivation behavior     
Received:  12 April 2022      32134.14.1005.4537.2022.107
ZTFLH:  TG174  
Fund: Central Government Guided Local Special Funds(YDZX20191400002094);Key Scientific Research Project in Shanxi Province(20191102006)
About author:  HOU Lifeng, E-mail: houlifeng@126.com

Cite this article: 

HE Zhihao, JIA Jianwen, LI Yang, ZHANG Wei, XU Fanghong, HOU Lifeng, WEI Yinghui. Passivation Behavior of Super Austenitic Stainless Steels in Simulated Flue Gas Desulfurization Condensate. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 408-414.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.107     OR     https://www.jcscp.org/EN/Y2023/V43/I2/408

SteelCCrNiMoNSiMnCuFe
316L0.0516.910.62.0---0.51.6---Bal.
904L0.0220.125.34.4---2.02.01.3Bal.
254SMo0.0519.717.86.20.21.01.00.8Bal.
Table 1  Chemical compositions of three test stainless steels (mass fraction / %)
Fig.1  Potentiodynamic polarization curves of 254Smo (a), 904L (b) and 316L (c) stainless steels at different pH values respectively, and at pH=3 (d)
Fig.2  M-S curves of 254SMo (a), 904L (b) and 316L (c) stainless steels at different pH values and at pH=3 (d)
Fig.3  XPS spectra of O 1s in the passive films formed on 254SMo stainless steel at pH=1 (a) and pH=3 (b)
pHNd (1021)Efb
254SMo904L316L254SMo904L316L
11.091.352.47-0.09-0.08-0.07
30.570.931.97-0.10-0.09-0.08
50.360.661.12-0.21-0.15-0.12
Table 2  Donor densities and flat band potentials of the passivation films of three steels
Fig.4  XPS spectra of Cr 2p in the passive films formed on 254SMo stainless steel at pH=1 (a) and pH=3 (b)
Fig.5  XPS spectra of Fe 2p in the passive film formed on 254SMo stainless steel at pH=1 (a) and pH=3 (b)
Fig.6  XPS spectra of Mo 3d in the passive films formed on 254SMo stainless steel at pH=1 (a) and pH=3 (b)
[1] Zhao K, Li X Q, Wang M T, et al. Corrosion behavior of four corrosion-resistant alloys in ultra-supercritical boiler flue gas condensate [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 493
(赵康, 李晓琦, 王铭滔 等. 4种耐蚀合金在超超临界锅炉烟气冷凝液中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 493)
[2] Wang C G, Wei J, Wei X, et al. Crevice corrosion behavior of several super stainless steels in a simulated corrosive environment of flue gas desulfurization process [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 43
(王长罡, 魏洁, 魏欣 等. 几种超级不锈钢在模拟烟气脱硫环境中的缝隙腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 43)
[3] Zhou B, Jin Z H, Ge H H. Electrochemical corrosion behavior of 254SMo stainless steel in simulated condensate of blast furnace gas [J]. Corros. Sci. Prot. Technol., 2018, 30: 163
(周彬, 金志浩, 葛红花. 254SMo不锈钢在高炉煤气模拟冷凝液中的电化学腐蚀行为 [J]. 腐蚀科学与防护技术, 2018, 30: 163)
[4] He J J, Xiang X W. A review of chimney corrosion study and anticorrosion material research in WFGD [J]. Environ. Technol., 2011, 35(4): 33
(何佳杰, 向贤伟. 湿法烟气脱硫中烟囱腐蚀及其防腐材料研究现状 [J]. 环境技术, 2011, 35(4): 33)
[5] Zhang Y G, Li S Y, Fan H Q, et al. Corrosion behavior of stainless steel in flue gas desulphurization system [J]. Mater. Prot., 2010, 43(3): 64
(张贻刚, 李淑英, 范洪强 等. 不锈钢在烟气脱硫系统中的腐蚀行为 [J]. 材料保护, 2010, 43(3): 64)
[6] He Y S, Yoo K B, Park J C, et al. TEM study the corrosion behavior of the low alloy steels developed for flue gas desulfurization system [J]. Mater. Charact., 2018, 142: 540
doi: 10.1016/j.matchar.2018.06.007
[7] Dou Y P, Han S K, Wang L W, et al. Characterization of the passive properties of 254SMO stainless steel in simulated desulfurized flue gas condensates by electrochemical analysis, XPS and ToF-SIMS [J]. Corros. Sci., 2020, 165: 108405
doi: 10.1016/j.corsci.2019.108405
[8] Jansen P, Hansen V, Jensen T. Corrosion experience with carbon steel in spray absorption FGD plant [J]. Mater. Corros., 1992, 43: 310
[9] Roth P. Corrosion-resistant special steels for flue gas desulphurisation plants [J]. Mater. Corros., 1992, 43: 275
[10] Darowicki K, Krakowiak S. Durability evaluation of Ni-Cr-Mo super alloys in a simulated scrubbed flue gas environment [J]. Anti-Corros. Methods Mater., 1999, 46: 19
doi: 10.1108/00035599910252703
[11] Feng H. Research on corrosion behaviour of super austenitic stainless steel with high Mo and N in typically extreme environments [D]. Shenyang: Northeastern University, 2014
(冯浩. 高钼高氮超级奥氏体不锈钢在典型极端环境中的腐蚀行为研究 [D]. 沈阳: 东北大学, 2014)
[12] Liu C T, Wu J K. Influence of pH on the passivation behavior of 254SMO stainless steel in 3.5%NaCl solution [J]. Corros. Sci., 2007, 49: 2198
doi: 10.1016/j.corsci.2006.10.032
[13] Chen X, Xiong Q Y, Zhu F, et al. The effects of chloride anions on corrosion and passivation behavior of 254SMO stainless steel in water absorbed of blast furnace gas (BFG) [J]. Int. J. Electrochem. Sci., 2018, 13: 1656
[14] Cui Z Y, Wang L W, Ni H T, et al. Influence of temperature on the electrochemical and passivation behavior of 2507 super duplex stainless steel in simulated desulfurized flue gas condensates [J]. Corros. Sci., 2017, 118: 31
doi: 10.1016/j.corsci.2017.01.016
[15] Escrivà-Cerdán C, Blasco-Tamarit E, García-García D M, et al. Effect of temperature on passive film formation of UNS N08031 Cr-Ni alloy in phosphoric acid contaminated with different aggressive anions [J]. Electrochim. Acta, 2013, 111: 552
doi: 10.1016/j.electacta.2013.08.040
[16] Liu X F. Research on pitting behavior of 904L and 254SMO in high chloride-containing acid environment [D]. Beijing: Beijing University of Chemical Technology, 2017
(刘欣芳. 904L和254SMO超级奥氏体不锈钢在高氯酸性环境中的点蚀行为研究 [D]. 北京: 北京化工大学, 2017)
[17] Chao K L, Liao H Y, Shyue J J, et al. Corrosion behavior of high nitrogen nickel-free Fe-16Cr-Mn-Mo-N stainless steels [J]. Metall. Mater. Trans., 2014, 45B: 381
[18] Zhang H W, Wang K. The influence of environmental factors on the pitting potential of stainless steel [J]. J. Beijing Iron Steel Inst., 1985, 7(3): 104
(张蕙文, 王旷. 环境因素对不锈钢点蚀电位的影响 [J]. 北京钢铁学院学报, 1985, 7(3): 104)
[19] Zhang Y, Kong L Z, Lu W, et al. Electrochemical properties of passive film on stainless steel surface in nitric acid solution [J]. Corros. Prot., 2018, 39: 906
(张瑜, 孔令真, 路伟 等. 在硝酸溶液中不锈钢表面钝化膜的电化学特性 [J]. 腐蚀与防护, 2018, 39: 906)
[1] LIANG Chaoxiong, LIANG Xiaohong, HAN Peide. Effect of a New Heat Treatment Process on B Elements Distribution, Second Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[2] CHEN Tingting, WU Xiaolei, HAN Peide. Gradient Nanotwin Structure Prepared by SMAT Technology on S31254 Super Austenitic Stainless Steel Surface and Its Corrosion Behavior in 10%NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(6): 973-978.
[3] ZHANG Hengkang, HUANG Feng, XU Yunfeng, YUAN Wei, QIU Yao, LIU Jing. Microstructure Evolution and Electrochemical Passivation Behavior of FeCrMn1.3NiAlx High Entropy Alloys[J]. 中国腐蚀与防护学报, 2022, 42(2): 218-226.
[4] Jianzhong Yan. REPASSIVATION BEHAVIOR of 316lSTAINLESS STEEL IN FRETTING WEAR AND CORROSION PROCESS[J]. 中国腐蚀与防护学报, 2000, 20(6): 355-360 .
No Suggested Reading articles found!