Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (4): 662-668    DOI: 10.11902/1005.4537.2021.144
Current Issue | Archive | Adv Search |
Ultimate Bearing Capacity of Ship Structure Based on Random Corrosion
MEI Jiaxue1, DU Zunfeng1(), ZHU Haitao1,2
1.School of Civil Engineering and Architecture, Tianjin University, Tianjin 300072, China
2.Tianjin Binhai Civil Engineering Structure and Safety Key Laboratory of Ministry of Education Tianjin University, Tianjing 300372, China
Download:  HTML  PDF(3168KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This paper puts forward a mathematical model for corrosion of steel made sea-going ships that takes the effect of marine environment temperature, seawater oxygen content and relative humidity into account. The effect of random corrosion on the local bearing capacity of stiffened plate structure of the ship and the longitudinal ultimate bearing capacity of ship hull girder is analyzed by finite element analysis. The distribution of ultimate bearing capacity of ship structure after being subjected from random corrosion is summarized. Compared with the nominal marine environment, the temperature, relative humidity and seawater oxygen content in marine environment have a significant impact on the ultimate bearing capacity of the ship structure. However, the ultimate bearing capacity of the stiffened plates and hull girder obeys a normal distribution after service for the same period of years.

Key words:  random corrosion      corrosion rate model      ship structure      ultimate bearing capacity      marine environment     
Received:  25 June 2021     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51478311);National Natural Science Foundation of China(51109158)
Corresponding Authors:  DU Zunfeng     E-mail:  dzf@tju.edu.cn
About author:  DU Zunfeng, E-mail: dzf@tju.edu.cn

Cite this article: 

MEI Jiaxue, DU Zunfeng, ZHU Haitao. Ultimate Bearing Capacity of Ship Structure Based on Random Corrosion. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 662-668.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.144     OR     https://www.jcscp.org/EN/Y2022/V42/I4/662

Fig.1  Comparison of corrosion thickness routes of deck (a), bottom plate (b), side plate (c), deck stiffeners (d), bottom stiffeners(e) and side plate stiffeners (f)
Fig.2  Calculation model of stiffened plate
Fig.3  Schematic diagram of stiffened plate thickness randomly generated
Ship age / aStandard environmental conditionsRoute 1Route 2Route 3Route 4Route 5Route 6
6.5234.597234.597234.597234.597234.597234.597234.597
10219.040219.785217.086216.453216.500218.934217.437
15207.948207.833202.985203.081202.100207.330204.044
20197.561198.293192.062190.213190.901196.410193.496
25188.823189.698181.911181.088179.824188.025183.444
30180.500181.612172.191171.717169.475179.519173.661
Table 1  Calculation results of ultimate bearing capacity of stiffened plates (MPa)
Fig.4  Comparison of ultimate bearing capacity routes of stiffened plates
Fig.5  Probability diagram of ultimate bearing capacity of stiffened plate
Fig.6  Finite element calculation model of container hull girder
Ultimate bearing capacity / 1012 N·mmANSYS (PNU)ANSYS (ISR)ABAQUS (CR)CSR (CR)CSR (PNU)ALPS/HULL (PNU)This article
Hogging6.9697.4907.6647.8797.7586.9167.777
Sagging6.9517.1767.6317.5896.8516.6357.730
Table 2  Comparison of ultimate bearing capacity results of container hull girder
Fig.7  Thickness of the randomly generated hull girder
Ship age / aStandard environmental conditionsRoute 1Route 2Route 3Route 4Route 5Route 6
6.57.7777.7777.7777.7777.7777.7777.777
107.4407.4467.3977.3957.3897.4387.414
157.2717.3287.2427.2067.1947.2677.253
207.2427.2487.1777.1707.1557.2277.199
257.1577.1627.0817.0787.0567.1487.096
307.0777.0917.0006.9876.9767.0727.022
Table 3  Calculation results of ultimate bearing capacity of hull girder hogging (1012 N·mm)
Fig.8  Probability diagram of ultimate bearing capacity of container hull girder hogging (a) and sagging (b)
Ship age / aStandard environmental conditionsRoute 1Route 2Route 3Route 4Route 5Route 6
6.57.7307.7307.7307.7307.7307.7307.730
107.7257.7247.7077.6977.6937.7327.715
157.6077.6277.5847.5717.5767.6037.592
207.5237.5307.4657.4597.4487.5207.486
257.4327.4457.3607.3577.3437.4227.381
307.3427.3547.2577.2537.2367.3347.284
Table 4  Calculation results of ultimate bearing capacity of hull girder sagging (1012 N·mm)
1 Fan Y M, Liu W, Sun Z T, et al. Effect of chloride ion on corrosion resistance of Ni-advanced weathering steel in simulated tropical marine atmosphere [J]. Construct. Build. Mater., 2021, 266: 120937
doi: 10.1016/j.conbuildmat.2020.120937
2 Gong K, Wu M, Xie F, et al. Effect of dry/wet ratio and pH on the stress corrosion cracking behavior of rusted X100 steel in an alternating dry/wet environment [J]. Construct. Build. Mater., 2020, 260: 120478
doi: 10.1016/j.conbuildmat.2020.120478
3 Bhandari J, Khan F, Abbassi R, et al. Pitting degradation modeling of ocean steel structures using Bayesian network [J]. J. Offshore Mech. Arct. Eng., 2017, 139: 051402
4 Soares C G, Garbatov Y, Zayed A, et al. Influence of environmental factors on corrosion of ship structures in marine atmosphere [J]. Corros. Sci., 2009, 51: 2014
doi: 10.1016/j.corsci.2009.05.028
5 Soares C G, Garbatov Y, Zayed A, et al. Effect of environmental factors on steel plate corrosion under marine immersion conditions [J]. Corros. Eng., Sci. Technol., 2011, 46: 524
6 Xu S H, Song C M, Li H. Difference in surface characteristics of corroded steel under simulated marine and general atmosphere environment [J]. Mater. Guide, 2021, 35: 2125
徐善华, 宋翠梅, 李晗. 模拟海洋和一般大气环境下锈蚀钢材表面形貌差异研究 [J]. 材料导报, 2021, 35: 2125
7 Lin C H, Ming N X, He C, et al. Effect of hydrostatic pressure on corrosion behavior of X70 steel in simulated sea water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 307
林朝晖, 明南希, 何川 等. 静水压力对X70钢在海洋环境中腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 307
8 Yang H Y, Huang G Q. Influence of environment factors on corrosion rate of carbon steel at the early stage in seawater [J]. Corros. Prot., 2014, 35: 576
杨海洋, 黄桂桥. 环境因素对碳钢实海暴露初期腐蚀速率的影响 [J]. 腐蚀与防护, 2014, 35: 576
9 Yang H Y, Huang G Q, Wang J. Influence of oceanic biofouling on corrosion of carbon steel in seawater [J]. Corros. Prot., 2009, 30: 78
杨海洋, 黄桂桥, 王佳. 生物污损对碳钢海水腐蚀的影响 [J]. 腐蚀与防护, 2009, 30: 78
10 Zheng J Y. Influence of marine biofouling on corrosion behaviour [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 171
郑纪勇. 海洋生物污损与材料腐蚀 [J]. 中国腐蚀与防护学报, 2010, 30: 171
11 Paik J K, Kim S K, Lee S K. Probabilistic corrosion rate estimation model for longitudinal strength members of bulk carriers [J]. Ocean Eng., 1998, 25: 837
doi: 10.1016/S0029-8018(97)10009-9
12 Hu B N. Ultimate strength assessment of ship structures subjected to random corrosion [D]. Harbin: Harbin Engineering University, 2015
胡冰楠. 随机腐蚀船体结构极限强度分析 [D]. 哈尔滨: 哈尔滨工程大学, 2015
13 Melchers R E. Pitting corrosion of mild steel in marine immersion environment—Part 1: maximum pit depth [J]. Corrosion, 2004, 60: 824
doi: 10.5006/1.3287863
14 Dillmann P, Mazaudier F, Hœrlé S. Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion [J]. Corros. Sci., 2004, 46: 1401
doi: 10.1016/j.corsci.2003.09.027
[1] TENG Lin, CHEN Xu. Research Progress of Galvanic Corrosion in Marine Environment[J]. 中国腐蚀与防护学报, 2022, 42(4): 531-539.
[2] CUI Zhongyu, GE Feng, WANG Xin. Corrosion Mechanism of Materials in Three Typical Harsh Marine Atmospheric Environments[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[3] LIN Zhaohui, MING Nanxi, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Hydrostatic Pressure on Corrosion Behavior of X70 Steel in Simulated Sea Water[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[4] LIU Yang, WU Jinyi, YAN Xiaoyu, CHAI Ke. Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[5] Yukun WANG, Jing LIU, Qian HU, Feng HUANG. Effect of S2- on Corrosion Behavior of A710 Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(3): 233-240.
[6] Sai YE, Moradi Masoumeh, Zhenlun SONG, Fangqin HU, Zhaohui SHUN, Jianping LONG. Inhibition Effect of Pseudoalteromonas Piscicida on Corrosion of Q235 Carbon Steel in Simulated Flowing Seawater[J]. 中国腐蚀与防护学报, 2018, 38(2): 174-182.
[7] WANG Li,LIU Chunyang,HAN Zhenyu, TONG Wenwei. HOT CORROSION BEHAVIOR AND EVALUATION OF TURBINE COMPONENTS AND MATERIALS USED FOR GAS TURBINE ENGINE[J]. 中国腐蚀与防护学报, 2011, 31(5): 399-403.
[8] LIU Wei, WANG Jia. ENVIRONMENTAL IMPACT OF MATERIAL CORROSION RESEARCH PROGRESS IN MARINE SPLASH ZONE[J]. 中国腐蚀与防护学报, 2010, 30(6): 504-512.
[9] WANG Chunli, WU Jianhua, LI Qingfen. RECENT ADVANCES AND PROSPECT OF GALVANIC CORROSION IN MARINE ENVIRONMENT[J]. 中国腐蚀与防护学报, 2010, 30(5): 416-420.
[10] Dayang Liu; Kaijin Wei; Wenjun Li. INFLUENCE OF ENVIRONMENTAL FACTORS IN YULIN AREA OFTHE SOUTH CHINA SEA ON LOCALIZED CORROSION OF STEELS[J]. 中国腐蚀与防护学报, 2003, 23(4): 211-216 .
No Suggested Reading articles found!