Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (3): 464-470    DOI: 10.11902/1005.4537.2021.119
Current Issue | Archive | Adv Search |
Effect of APTES Modified Montmorillonite on Protective Property of Hybrid Sol-gel Coating on Mg-alloy
LIU Xuanxuan1, YU Jinshan2, GAO Yan1, ZHAO Peng2, WANG Qiwei1, DU Zhuoling1, ZHANG Junxi1()
1.Shanghai Key Laboratory of Electric Power Material Protection and New Material, Shanghai University of Electric Power, Shanghai 200090, China
2.Electric Power Research Institute of State Grid Tianjin Electric Power Company, Tianjin 300384, China
Download:  HTML  PDF(3760KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Due to the poor compatibility between montmorillonite and organic-inorganic hybrid sol-gel system, APTES (aminopropyltriethoxysilane) was used to graft-modification of montmorillonite (AP-MMT) . Through the introduction of amino group on the surface of montmorillonite to establish a tough bonding with the sol-gel system, a more compact and stable composite coating was obtained on AZ31B Mg-alloy. The characterization of montmorillonite indicated that APTES were successfully grafted onto the montmorillonite lamellae. Analysis results showed that the corrosion resistance of sol-gel coating with AP-MMT was improved to a certain extent compared with that of pure sol-gel coating. Electrochemical impedance spectroscopy (EIS) analysis of coated samples immersing in 0.05 mol/L NaCl solution for different time showed that the sol-gel coating before and after doping with AP-MMT exhibited different failure mechanism, which were related to the denser structure caused by the addition of modified montmorillonite.

Key words:  Mg- alloy      inorganic-organic hybrid sol-gel coating      montmorillonite      modification      assembly     
Received:  28 May 2021     
ZTFLH:  TB332  
Fund: Science and Technology Commission of Shanghai Municipality(19DZ2271100)
Corresponding Authors:  ZHANG Junxi     E-mail:  zhangjunxi@shiep.edu.cn
About author:  ZHANG Junxi, E-mail: zhangjunxi@shiep.edu.cn

Cite this article: 

LIU Xuanxuan, YU Jinshan, GAO Yan, ZHAO Peng, WANG Qiwei, DU Zhuoling, ZHANG Junxi. Effect of APTES Modified Montmorillonite on Protective Property of Hybrid Sol-gel Coating on Mg-alloy. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 464-470.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.119     OR     https://www.jcscp.org/EN/Y2022/V42/I3/464

Fig.1  Surface morphologies of as-prepared AP-MMT: (a) low magnify, (b) high magnify
Fig.2  XRD (a) and FTIR (b) spectrum of Na-MMT and AP-MMT
Fig.3  Surface morphologies of PSG (a) and APSG (b) coated sample and cross-sectional morphology of sol-gel coating (c)
Fig.4  Polarization curves of different coated samples
SampleEcorr vs SCE / VIcorr / A·cm-2
Bare-1.49931.75×10-5
PSG-1.4961.03×10-7
APSG-1.4826.77×10-8
Table 1  Electrochemical parameters of polarization curve
Fig.5  Bode plots of PSG (a, b) and APSG (c, d) coated sample after immersing in 0.05 mol/L NaCl solution for different time
Fig.6  Equivalent electrical circuits of EIS of different coated samples at different soaking stage: (a) bare 1 h; (b) PSG 1 h, APSG 1 h-15 d; (c) PSG 7 d-15 d
SampleTimeQRΩ·cm2QRΩ·cm2QRΩ·cm2χ2
Y / Ω-1·cm-2·μSnnY / Ω-1·cm-2·μSnnY / Ω-1·cm-2·μSnn
Bare15.010.90623878---------15031.013138.798×10-4
PSG1 h4.425×10-40.9143.688×105---------3.1290.79772.966×1052.43×10-3
7 d1.841×10-30.858952002.5870.57333.901×1044.9840.70355.952×1058.07×10-5
15 d2.9210.358719180.21420.929512366.2480.63513.899×1052.2×10-4
APSG1 h3.482×10-40.92391.096×106---------2.3330.83341.022×1061.688×10-3
7 d4.662×10-40.92116.640×104---------4.1190.59816.934×1057.479×10-4
15 d5.484×10-40.91723.313×104---------5.9230.58584.437×1057.72×10-4
Table 2  Equivalent fitting parameters from Bode plots
Fig.7  Morphologies of PSG (a) and APSG (b) coated samples after immersing in 0.05 mol/L NaCl solution for 15 d
Fig.8  Schematic representation of the coating formation mechanisms of the APSG coating
1 Esmaily M, Svensson J E, Fajardo S, et al. Fundamentals and advances in magnesium alloy corrosion [J]. Prog. Mater. Sci., 2017, 89: 92
2 Xu T C, Yang Y, Peng X D, et al. Overview of advancement and development trend on magnesium alloy [J]. J. Magnes. Alloy., 2019, 7: 536
3 Xie L Y, Cao X L, Shi G L, et al. Progress of sol-gel coatings on corrosion protection of magnesium alloy [J]. Mater. Prot., 2016, 49(5): 41
谢丽云, 曹献龙, 施国霖等. 溶胶-凝胶涂层在镁合金腐蚀防护应用中的研究进展 [J]. 材料保护, 2016, 49(5): 41
4 Xi Y S, Yang X D, Liu G M. Research progress on hybrid materials prepared by the Sol-Gel method [J]. Surf. Technol., 2012, 41(3): 120
奚愚生, 杨晓东, 刘光明. 溶胶-凝胶法制备杂化材料的研究进展 [J]. 表面技术, 2012, 41(3): 120
5 Zhang D D, Peng F, Liu X Y. Protection of magnesium alloys: From physical barrier coating to smart self-healing coating [J]. J. Alloy. Compd., 2021, 853: 157010
6 Nezamdoust S, Seifzadeh D, Habibi-Yangjeh A. Nanodiamond incorporated sol-gel coating for corrosion protection of magnesium alloy [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 1535
7 Ramezanzadeh B, Haeri Z, Ramezanzadeh M. A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO2-GO); fabrication of SiO2-GO/epoxy composite coating with superior barrier and corrosion protection performance [J]. Chem. Eng. J., 2016, 303: 511
8 Matin E, Attar M M, Ramezanzadeh B. Investigation of corrosion protection properties of an epoxy nanocomposite loaded with polysiloxane surface modified nanosilica particles on the steel substrate[J]. Prog. Org. Coat., 2015, 78: 395
9 Tamilselvi M, Kamaraj P, Arthanareeswari M, et al. Development of nano SiO2 incorporated nano zinc phosphate coatings on mild steel[J]. Appl. Surf. Sci., 2015, 332: 12
10 Ghanbari A, Attar M M. A study on the anticorrosion performance of epoxy nanocomposite coatings containing epoxy-silane treated nano-silica on mild steel substrate [J]. J. Ind. Eng. Chem., 2015, 23: 145
11 Li C Y, Fan X L, Cui L Y, et al. Corrosion resistance and electrical conductivity of a nano ATO-doped MAO/methyltrimethoxysilane composite coating on magnesium alloy AZ31 [J]. Corros. Sci., 2020, 168: 108570
12 Wang X, Shi C J, Li X Y, et al. Preparation and properties of silane functionalized montmorillonite/styrene-ethylene-butadiene-styrene block copolymer nanocomposites [J]. China Synth. Rubber Ind., 2016, 39: 482
王霞, 史晨杰, 李晓燕等. 硅烷功能化蒙脱土/苯乙烯-乙烯-丁二烯-苯乙烯嵌段共聚物纳米复合材料的制备及性能 [J]. 合成橡胶工业, 2016, 39: 482
13 Mao C Y, Huang Y J, Li G X. Review on the high barrier polymer films enhanced by nanoplatelets [J]. China Plast., 2015, 29(10): 7
毛超英, 黄亚江, 李光宪. 聚合物/层状纳米填料阻隔复合薄膜研究进展 [J]. 中国塑料, 2015, 29(10): 7
14 Para M L, Versaci D, Amici J, et al. Synthesis and characterization of montmorillonite/polyaniline composites and its usage to modify a commercial separator [J]. J. Electroanal. Chem., 2021, 880: 114876
15 Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of m-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
栾浩, 孟凡帝, 刘莉等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161
16 Ma Y, Di H H, Yu Z X, et al. Fabrication of silica-decorated graphene oxide nanohybrids and the properties of composite epoxy coatings research [J]. Appl. Surf. Sci., 2016, 360: 936
17 Chen T X, Yuan Y, Zhao Y L, et al. Preparation of montmorillonite nanosheets through freezing/thawing and ultrasonic exfoliation [J]. Langmuir, 2019, 35: 2368
18 Praus P, Reli M, Kočí K, et al. Photocatalytic reactions of nanocomposite of ZnS nanoparticles and montmorillonite [J]. Appl. Surf. Sci., 2013, 275: 369
19 Liu C M, Liu S, Wu P X, et al. Enhancing the adsorption behavior and mechanism of Sr (II) by functionalized montmorillonite with different 3-aminopropyltriethoxysilane (APTES) ratios [J]. RSC Adv., 2016, 6: 83288
20 Yin X X, Mu P, Wang Q T, et al. Superhydrophobic ZIF-8-based dual-layer coating for enhanced corrosion protection of Mg alloy [J]. ACS Appl. Mater. Interfaces, 2020, 12: 35453
21 Tian G Y, Zhang M, Zhao Y, et al. High corrosion protection performance of a novel nonfluorinated biomimetic superhydrophobic Zn-Fe coating with Echinopsis multiplex-like structure [J]. ACS Appl. Mater. Interfaces, 2019, 11: 38205
22 Jiang D, Xia X C, Hou J, et al. A novel coating system with self-reparable slippery surface and active corrosion inhibition for reliable protection of Mg alloy [J]. Chem. Eng. J., 2019, 373: 285
23 Jiang D, Xia X C, Hou J, et al. Enhanced corrosion barrier of microarc-oxidized mg alloy by self-healing superhydrophobic silica coating [J]. Ind. Eng. Chem. Res., 2018, 58: 165
24 Wang J, Cui L Y, Ren Y D, et al. In vitro and invivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2020, 47: 52
25 Wang G R, Zheng H P, Cai H Y, et al. Failure process of epoxy coating subjected test of alternating immersion in artificial seawater and dry in air [J]. J. Chin. Soc. Corros. Prot, 2019, 39: 571
王贵容, 郑宏鹏, 蔡华洋等. 环氧防腐涂料在模拟海水干湿交替条件下的失效过程 [J]. 中国腐蚀与防护学报, 2019, 39: 571
[1] LIANG Taihe, ZHU Xuemei, ZHANG Zhenwei, WANG Xinjian, ZHANG Yansheng. Corrosion Performance of Transition Layer at Interface of Oxide Scale/substrate Formed on Austenitic Steel Fe32Mn7Cr3Al2Si During High Temperature Oxidation[J]. 中国腐蚀与防护学报, 2022, 42(2): 317-323.
[2] ZHANG Chengdong, LIU Bin, SHI Zeyao, LIU Yan, CAO Qingmin, JIAN Donghui. Research Progress in Corrosion Behavior of Nickel Aluminum Bronze Alloys in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[3] DING Yukang, CHEN Guomei, NI Zifeng, LIU Yaxuan, QIAN Shanhua, BIAN Da, ZHAO Yongwu. Corrosion Resistance of Silane Film Modified by Hexagonal Boron Nitride[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[4] ZHANG Chenyang, LIU Huicong, HAN Dongxiao, ZHU Liqun, LI Weiping. Preparation of Micron SiC/Ni-Co-P Composite Coatings and Influencing Factors[J]. 中国腐蚀与防护学报, 2021, 41(5): 579-584.
[5] LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin. Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[6] ZHAO Boru, SUN Zhi, ZHAO Jianwei, CHEN Zhidong. Self-assembly Process of Hexadecanethiol on Silver Plating Surface and Its Protectiveness[J]. 中国腐蚀与防护学报, 2020, 40(3): 281-288.
[7] BAI Pengkai, XU Ping. Synthesis and Modification of Green Environment-friendly Scale Inhibitors in the Field of Water Treatment: the State-of-art Technological Advances[J]. 中国腐蚀与防护学报, 2020, 40(2): 87-95.
[8] XIE Xuan, LIU Li, WANG Fuhui. Effect of Preparation and Surface Modification of TiO2 on Its Photoelectrochemical Cathodic Protection Performance[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[9] Wenye LU,Dieyi CHEN,Burong CHEN,Tao TANG. Hexadecane-thiol Self-assembly Monolayers on Silver for Anti-tarnishing[J]. 中国腐蚀与防护学报, 2016, 36(2): 172-176.
[10] Yanan FANG,Liguang QIN,Wenjie ZHAO,Qin BAI,Xin ZHANG,Xuedong WU. Research Progress and Development Trend on Corrosion Resistant Fluorocarbon Paint[J]. 中国腐蚀与防护学报, 2016, 36(2): 97-106.
[11] DU Bin, ZHOU Shisheng, LI Min, MA Liping. Progress in Research and Development for Surface Modification of Aluminum Pigments and Related Techniques[J]. 中国腐蚀与防护学报, 2014, 34(5): 410-418.
[12] HOU Wenting, KANG Zhixin. PREPARATION OF GREENISH SUPER-HYDROPHOBIC DUPLEX-MODIFIED FILM ON Mg-Li ALLOY AND ITS CORROSION RESISTANCE[J]. 中国腐蚀与防护学报, 2012, 32(4): 306-310.
[13] . RESEARCH OF SULFURIC ACID CORROSION AND CORROSION PRODUCT OF POLY (METHYL METHACRYLATE)/ MONTMORILLONITE NANOCOMPOSITES[J]. 中国腐蚀与防护学报, 2008, 28(5): 296-298 .
[14] Lei Mingkai;Yuan Lijiang;Kong Changjing;Zhang Zhonglin(Dalian University of Technology). CORROSION RESISTANCE OF PLASMA-MODIFIED PASSIVE FILM OF 1Cr18Ni9Ti STAINLESS STEEL[J]. 中国腐蚀与防护学报, 1996, 16(1): 77-80.
[15] Wen Guomou; Ma Tingchun; Fang Bingfu; Zheng Fuyang; Chen Aicheng(Fujian Institute of Research on the Structure of Matter Chinese Academy Of Sciences). PASSIVATION BEHAVIOUR OF CHROMIUM PLATING FILM AND ITS CATHODICALLY MODIFIED SPECIES[J]. 中国腐蚀与防护学报, 1995, 15(1): 21-27.
No Suggested Reading articles found!