Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (2): 139-150    DOI: 10.11902/1005.4537.2019.254
Current Issue | Archive | Adv Search |
Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review
LI Chengyuan, CHEN Xu(), HE Chuan, LI Hongjin, PAN Xin
College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
Download:  HTML  PDF(8006KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Alternating current (AC) induced corrosion is defined that the electrochemical corrosion process of metals caused by alternating current. Buried metal pipelines are frequently damaged when the alternating current applied. With the increasing cases that high-voltage transmission lines and/or electrical traction system cross over or parallel to buried pipelines, the AC corrosion becomes increasingly serious and the hazard of AC corrosion on buried pipelines can not be ignored. Although the research on AC corrosion has a history over centuries, there are still many difficult problems to be solved. Issue regarding AC corrosion has been intensively and extensively focused on. In this paper, the research progress on the characteristics, mechanism, influencing factors of AC corrosion and the effect of AC corrosion on cathodic protection and microbial corrosion in recent years were reviewed systematically. By discussing the key problems existing in the current research, this paper looks forward to the research prospect and development trend of this field, and provides new ideas for researchers in related fields.

Key words:  alternating current      buried pipeline      corrosion mechanism      influence factor      cathodic protection     
Received:  11 December 2019     
ZTFLH:  TG174  
Fund: Chunhui Program of the Ministry of Education of China and Key Project of Education Department of;Liaoning Province of China(L2017LZD004)
Corresponding Authors:  CHEN Xu     E-mail:  cx0402@sina.com
About author:  CHEN Xu, E-mail: cx0402@sina.com

Cite this article: 

LI Chengyuan, CHEN Xu, HE Chuan, LI Hongjin, PAN Xin. Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review. Journal of Chinese Society for Corrosion and protection, 2021, 41(2): 139-150.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.254     OR     https://www.jcscp.org/EN/Y2021/V41/I2/139

Fig.1  Schematic diagrams of capacitance (a), resistance (b) and inductance (c) coupling interferences
Fig.2  Explanation of the mechanism of rectification effect[29]
Fig.3  Comparison of corrosion rates obtained by mass loss test and linear regression of polarization curve[31]
Fig.4  Schematic diagram of the depolarization of anodic reaction[33]
Fig.5  Schematic diagram of component and structure evolutions of corrosion product film[25]
Fig.6  Relationship between AC current density and corrosion rate[42]
Fig.7  Corrosion morphologies of X80 steel after 24 h interferences of AC with different densities of 100 A/m2 (a), 200 A/m2 (b), 300 A/m2 (c), 400 A/m2 (d) and 500 A/m2 (e)[35]
Fig.8  Corrosion morphologies of X70 steel after 10 d interfereness of AC with diffferent densities of 0 A/m2 (a~c), 20 A/m2 (d~f), 30 A/m2 (g~i), 50 A/m2 (j~l), 100 A/m2 (m~o), 200 A/m2 (p~r), 500 A/m2 (s~u) and 1000 A/m2 (v~x)[46]
Fig.9  Changes of the number of bacteria with test time[65]
Fig.10  Changes of the corrosion rate of carbon steel with the ratio of AC/DC current density and the cathodic polarization potential[74]
Fig.11  Relationship between damage area of the coating and AC density[37]
1 Han C C, Cao G F, Qin H M, et al. Analysis of failures induced by the discharge ablation of pressure-guiding tubes in valve chambers [J]. Nat. Gas Ind., 2016, 36(10): 118
韩昌柴, 曹国飞, 覃慧敏等. 阀室引压管放电烧蚀失效分析 [J]. 天然气工业, 2016, 36(10): 118
2 Ren Z J. Detection and protection of stray current interference of Rizhao-Dongming oil pipeline [J]. Oil Gas Storage Transport., 2015, 34: 111
任增珺. 日东管道杂散电流干扰检测与防护 [J]. 油气储运, 2015, 34: 111
3 Hanson H R, Smart J. AC corrosion on a pipeline located in a HVAC utility corridor [A]. Corrosion 2004 [C]. New Orleans, Louisiana, 2004
4 Song X L, Lin H. Analysis on the research status of AC interference criterion for pipeline under the condition of Yin protection [J]. China Petrol. Chem. Stand. Qual., 2019, 39(16): 6
宋晓露, 林海. 阴保状态下管道交流干扰准则研究现状分析 [J]. 中国石油和化工标准与质量, 2019, 39(16): 6
5 Zhang H P. Assessment and control of alternating current corrosion on steel pipelines [J]. Total Corros. Control, 2018, 32(11): 107
张合平. 埋地钢质管道交流腐蚀的评估与控制 [J]. 全面腐蚀控制, 2018, 32(11): 107
6 Xia H, Liu J, Wang K C, et al. Investigation of electrochemical corrosion for long distance pipeline and its protection [J]. Guangdong Chem. Ind., 2018, 45(9): 163
夏辉, 刘俊, 王科钞等. 电化学腐蚀对长输管道影响的探讨与防护 [J]. 广东化工, 2018, 45(9): 163
7 Liu Z J, Chen D Q, Jin Z, et al. Assessment code for AC corrosion of buried steel pipe [J]. Oil Gas Storage Transport., 2011, 30: 690
刘志军, 陈大庆, 金哲等. 埋地钢质管道交流腐蚀的评价准则 [J]. 油气储运, 2011, 30: 690
8 Wakelin R G, Gummow R A, Segall S M. corrosion-case histories AC, testprocedures & mitigation [A]. Corrosion 98 [C]. San Diego, California, 1998
9 Kulman F E. Effects of alternating currents in causing corrosion [J]. Corrosion, 1961, 17: 34
10 Wakelin R G, Sheldon C. Investigation and mitigation of AC corrosion on a 300 MM natural gas pipeline [A]. Corrosion 2004 [C]. New Orleans, Louisiana, 2004
11 Ding Q M, Wang H, Lv H L, et al. Electrochemical study on impact of AC on cathodic protection potential for X70 steel [J]. Corros. Prot., 2011, 32: 984
丁清苗, 王辉, 吕亳龙等. 电化学方法研究交流干扰对阴极保护电位的影响 [J]. 腐蚀与防护, 2011, 32: 984
12 Li Y, Zhang L J, Tao G, et al. Experiment analysis of influence factors of corrosion induced by alternating current interference for buried steel pipelines [J]. Total Corros. Control, 2011, 25(11): 38
李源, 张礼敬, 陶刚等. 埋地钢质管道交流干扰腐蚀影响因素实验分析 [J]. 全面腐蚀控制, 2011, 25(11): 38
13 Wang Y M, Zhang L J, Tao G, et al. Safety research on corrosion induced by AC interference for buried pipeline based on fuzzy theory [J]. Ind. Saf. Environ. Prot., 2011, 37(9): 47
王益敏, 张礼敬, 陶刚等. 基于模糊理论的埋地管道交流干扰腐蚀安全性研究 [J]. 工业安全与环保, 2011, 37(9): 47
14 Jiang Z T, Du Y X, Dong L, et al. Effect of AC current on corrosion potential of Q235 steel [J]. Acta Metall. Sin., 2011, 47: 997
姜子涛, 杜艳霞, 董亮等. 交流电对Q235钢腐蚀电位的影响规律研究 [J]. 金属学报, 2011, 47: 997
15 Weng W J, Wang N. Carbon steel corrosion induced by alternating current [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 270
翁永基, 王宁. 碳钢交流电腐蚀机理的探讨 [J]. 中国腐蚀与防护学报, 2011, 31: 270
16 Hu S X. Present status and prospect of cathodic protection for pipeline [J]. Corros. Prot., 2004, 25(3): 93
胡士信. 管道阴极保护技术现状与展望 [J]. 腐蚀与防护, 2004, 25(3): 93
17 Zhang J Y, Wang F C, Zhang Y M. Discussion on the safety distance and space of high-tension transmission line over buried pipelines [J]. Oil Gas Storage Transport., 2006, 25(4): 47
张俊义, 王富才, 张彦敏. 高压输电线与埋地管道相互影响的安全问题 [J]. 油气储运, 2006, 25(4): 47
18 Li W, Du Y X, Jiang Z T, et al. Research progress on AC interference of electrified railway on buried pipeline [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 381
李伟, 杜艳霞, 姜子涛等. 电气化铁路对埋地管道交流干扰的研究进展 [J]. 中国腐蚀与防护学报, 2016, 36: 381
19 Ouyang X H, Yan M, Liu Q Z, et al. Criteria of high-voltage transmission lines to discriminate AC corrosion of buried pipelines [J]. Sci. Technol. Innovat. Herald, 2015, (34): 67
欧阳孝含, 阎明, 刘全桢等. 高压输电线对埋地管道交流腐蚀相关判别的准则 [J]. 科技创新导报, 2015, (34): 67
20 Zhang W Y. Stray current corrosion and protection [J]. Total Corros. Control, 2017, 31(5): 1
张文毓. 杂散电流的腐蚀与防护 [J]. 全面腐蚀控制, 2017, 31(5): 1
21 Yin K H, Xiong X J, Zhang D C. Interference of power frequency electromagnetic field to underground oil and gas pipeline [J]. Chengdu Kejidaxue Xuebao, 1979, (1): 150
尹可华, 熊祥健, 张达昌. 工频电磁场对地下石油天然气管道的干扰 [J]. 成都科技大学学报, 1979, (1): 150
22 Lalvani S B, Zhang G. The corrosion of carbon steel in a chloride environment due to periodic voltage modulation: Part I [J]. Corros. Sci., 1995, 37: 1567
23 Williams J F. Corrosion of metals under the influence of alternating current [J]. Mater. Prot., 1966, 5: 52
24 Li M, Shu Y, Yan M C, et al. Corrosion electrochemical behavior of X80 pipeline steel under AC current interference [J]. Total Corros. Control, 2017, 31(8): 54
李明, 舒韵, 闫茂成等. 交流电干扰下X80管线钢的腐蚀电化学行为 [J]. 全面腐蚀控制, 2017, 31(8): 54
25 Guo Y B, Meng T, Wang D G, et al. Experimental research on the corrosion of X series pipeline steels under alternating current interference [J]. Eng. Fail. Anal., 2017, 78: 87
26 Fu A Q, Cheng Y F. Effects of alternating current on corrosion of a coated pipeline steel in a chloride-containing carbonate/bicarbonate solution [J]. Corros. Sci., 2010, 52: 612
27 Kuang D, Cheng Y F. Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions [J]. Corros. Sci., 2014, 85: 304
28 McCollum B, Ahlborn G H. The influence of frequency of alternating or infrequency reversed current on electrolytic corrosion [J]. J.Frankl. Inst., 1916, 182(1): 108
29 Yunovich M, Thompson N G. AC corrosion: Mechanism and proposed model [A]. Proceedings of the 2004 IPC [C]. Calgary, 2004
30 Bruckner W H. The effect of 60 cycle alternating current on the corrosion of steels and other metals buried in soils [R]. Illinois: Engineering Experiment Station Bulletion 470, University of Illi-nois, Urbana, 1964
31 Goidanich S, Lazzari L, Ormellese M. AC corrosion. Part 2: Parameters influencing corrosion rate [J]. Corros. Sci., 2010, 52: 916
32 Cao C N. Principle of corrosion electrochemistry [M]. 3rd Ed. Beijing: Chemical Industry Press, 2008
曹楚南. 腐蚀电化学原理 [M]. 第三版. 北京: 化学工业出版社, 2008
33 Jones D A. Effect of alternating current on corrosion of low alloy and carbon steels [J]. Corrosion, 1978, 34: 428
34 Li Y, Wang Y C, Liang J L. Research of corrosion behavior of X70 pipeline steel in AC environment [J]. Petrochem. Ind. Technol., 2017, 24(3): 78
李岩, 王一程, 梁金禄. 在交流电作用下X70管线钢腐蚀行为研究 [J]. 石化技术, 2017, 24(3): 78
35 Wang X, Zhang P, Wang F, et al. Alternating current corrosion behavior of X80 steel in 0.5 mol/L NaHCO3 solution [J]. Corros. Prot., 2015, 36: 846
王霞, 张鹏, 王飞等. X80钢在0.5 mol/L NaHCO3溶液中的交流电流腐蚀行为 [J]. 腐蚀与防护, 2015, 36: 846
36 Nielsen L V. Role of alkalization in AC induced corrosion of pipelines and consequences hereof in relation to CP requirements [A]. Corrosion 2005 [C]. Houston, Texas, 2005
37 Nielsen L V, Nielsen K V, Baumgarten B, et al. AC induced corrosion in pipelines: detection, characterization and mitigation [A]. Corrosion 2004 [C]. New Orleans, Louisiana, 2004
38 Panossian Z, Filho S E A, de Almeida N L, et al. Effect of alternating current by high power lines voltage and electric transmission systems in pipelines corrosion [A]. Corrosion 2009 [C]. Atlanta, Georgia, 2009
39 Tang D Z. Study of alternating current interference on cathodic protection system of buried pipeline [D]. Beijing: University of Science and Technology Beijing, 2016
唐德志. 交流电流对埋地管道阴极保护系统的影响规律及作用机制研究 [D]. 北京: 北京科技大学, 2016
40 Goidanich S, Lazzari L, Ormellese M. AC corrosion-Part 1: Effects on overpotentials of anodic and cathodic processes [J]. Corros. Sci., 2010, 52: 491
41 Ma J, Zhu M, Yuan Y F, et al. Corrosion behavior of X100 pipeline steel with different microstructures in simulated solution of Golmud soil under AC interference [J]. Surf. Technol., 2019, 48(8): 272
马俊, 朱敏, 袁永锋等. 交流干扰下不同组织X100钢在格尔木土壤模拟溶液中的腐蚀行为 [J]. 表面技术, 2019, 48(8): 272
42 Wang X H, Yang G Y, Huang H, et al. AC stray current corrosion law of buried steel pipeline [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 293
王新华, 杨国勇, 黄海等. 埋地钢质管道交流杂散电流腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2013, 33: 293
43 Kim D K, Muralidharan S, Ha T H, et al. Electrochemical studies on the alternating current corrosion of mild steel under cathodic protection condition in marine environments [J]. Electrochim. Acta, 2006, 51: 5259
44 Wu W, Pan Y, Liu Z Y, et al. Electrochemical and stress corrosion mechanism of submarine pipeline in simulated seawater in presence of different alternating current densities [J]. Materials, 2018, 11: 1074
45 Reyes T, Bhola S, Olson D L, et al. Study of corrosion of super martensitic stainless steel under alternating current in artificial seawater with electrochemical impedance spectroscopy [J]. AIP Conf. Proc., 2011, 1335: 1241
46 Yang Y. A corrosion behavior and mechanism of X70 pipeline steel[D]. Qingdao: China University of Peroleum (East China), 2013
杨燕. X70钢交流腐蚀行为及机理研究 [D]. 青岛: 中国石油大学(华东), 2013
47 Liu Z Y, Du C W, Li C, et al. Stress corrosion cracking of welded API X70 pipeline steel in simulated underground water [J]. J. Mater. Eng. Perform., 2013, 22: 2550
48 Wan H X, Song D D, Liu Z Y, et al. Effect of alternating current on stress corrosion cracking behavior and mechanism of X80 pipeline steel in near-neutral solution [J]. J. Nat. Gas Sci. Eng., 2017, 38: 458
49 Chin D T, Sachdev P. Corrosion by alternating current: Polarization of mild steel in neutral electrolytes [J]. J. Electrochem. Soc., 1983, 130: 1714
50 He H W, Cao B, Bai D J, et al. Influence of AC stray current on corrosion electrochemistry behavior [J]. Corros. Prot., 2014, 35: 721
和宏伟, 曹备, 白冬军等. 交流杂散电流对金属腐蚀电化学行为的影响 [J]. 腐蚀与防护, 2014, 35: 721
51 Bertocci U. AC induced corrosion. The effect of an alternating voltage on electrodes under charge-transfer control [J]. Corrosion, 1979, 35: 211
52 Wendt J L, Chin D T. The a. c. corrosion of stainless steel—II. The polarization of SS304 and SS316 in acid sulfate solutions [J]. Corros. Sci., 1985, 25: 901
53 Radeka R, Zorovic D, Barisin D. Influence of frequency of alternating current on corrosion of steel in seawater [J]. Anti-Corros. Methods Mater., 1980, 27: 13
54 Dyer C K, Alwitt R S. Surface changes during A.C. etching of aluminum [J]. J. Electrochem. Soc., 1981, 128: 300
55 Guo M, Yang Q. Effects of AC etching waveforms on micro-photography and properties of the low-voltage etched aluminum foil [J]. Electr. Comp. Mater., 2013, 32(2): 26
郭敏, 杨琴. 交流电波形对低压腐蚀铝箔微观形貌及性能的影响 [J]. 电子元件与材料, 2013, 32(2): 26
56 Vagramyan A T, Sutyagina A A. The effect of alternating current on the electrodeposition of nickel [J]. Bull. Acad. Sci. USSR, Div. Chem. Sci., 1952, 1: 399
57 Pookote S R, Chin D T. Effect of alternating current on the under ground corrosion of steels [J]. Mater. Perform., 1978, 17: 9
58 Zhu M, Du C W, Li X G, et al. Effect of alternating current frequency on corrosion behavior of X65 steel in CO32-/HCO3- solution [J]. J. Mater. Eng., 2014, (11): 85
朱敏, 杜翠薇, 李晓刚等. 交流电频率对X65钢在CO32-/HCO3-溶液中腐蚀行为的影响 [J]. 材料工程, 2014, (11): 85
59 Helm G, Heim T, Heinzen H, et al. Investigation of corrosion of cathodically protected steel subjected to alternating currents [J]. 3R Int., 1993, 32: 246
60 Fu Y, Kou J, Du C W. Fractal characteristics of AC corrosion morphology of X80 pipeline steel in coastal soil solution [J]. Anti-Corros. Methods Mater., 2019, 66: 868
61 Tu C Y, Liu Q. Study on alternating current corrosion behavior of X80 coating steel [J]. Total Corros. Control, 2017, 31(12): 69
涂承媛, 刘强. 交流杂散电流作用下X80涂层钢的腐蚀行为研究 [J]. 全面腐蚀控制, 2017, 31(12): 69
62 Zhang H, Du Y X, Li W, et al. Investigation on AC-induced corrosion behavior and product film of X70 steel in aqueous environment with various ions [J]. Acta Metall. Sin., 2017, 53: 975
张慧, 杜艳霞, 李伟等. 不同环境介质中X70钢的交流腐蚀行为及腐蚀产物膜层分析 [J]. 金属学报, 2017, 53: 975
63 Torstensen A. AC corrosion on cathodically protected steel [D]. Trondheim: Norwegian University of Science and Technology, 2012
64 Lilleby L. Effect of AC current on calcareous deposits [D]. Trondheim: Norwegian University of Science and Technology, 2009
65 Qing Y C, Yang Z W, Xian J, et al. Corrosion behavior of Q235 steel under the interaction of alternating current and microorganisms [J]. Acta Metall. Sin., 2016, 52: 1142
卿永长, 杨志炜, 鲜俊等. 交流电和微生物共同作用下Q235钢的腐蚀行为 [J]. 金属学报, 2016, 52: 1142
66 Qing Y C, Bai Y L, Xu J, et al. Effect of alternating current and sulfate-reducing bacteria on corrosion of X80 pipeline steel in soil-extract solution [J]. Materials, 2019, 12: 144
67 NACE SP0169 Control of external corrosion on underground or submerged metallic piping systems [S]. NACE, 1996
68 Hosokawa Y, Kajiyama F, Nakamura Y. New CP criteria for elimination of the risks of AC corrosion and overprotection on cathodically protected pipelines [A]. Corrosion 2002 [C]. Denver, Colorado, 2002
69 Kajiyama F, Nakamura Y. Effect of induced alternating current voltage on cathodically protected pipelines paralleling electric power transmission lines [J]. Corrosion, 1999, 55: 200
70 Ibrahim I, Takenouti H, Tribollet B, et al. Harmonic analysis study of the AC corrosion of buried pipelines under cathodic protection [A]. Corrosion 2007 [C]. Nashville, Tennessee, 2007
71 Guo Y B, Tan H, Meng T, et al. Effects of alternating current interference on the cathodic protection for API 5L X60 pipeline steel [J]. J. Nat. Gas Sci. Eng., 2016, 36: 414
72 Xu L Y, Su X, Cheng Y F. Effect of alternating current on cathodic protection on pipelines [J]. Corros. Sci., 2013, 66: 263
73 Kuang D, Cheng Y F. Effects of alternating current interference on cathodic protection potential and its effectiveness for corrosion protection of pipelines [J]. Corros. Eng. Sci. Technol., 2017, 52: 22
74 Ormellese M, Lazzari L, Goidanich S, et al. CP criteria assessment in the presence of AC interference [A]. Corrosion 2008 [C]. New Orleans, Louisiana, 2008
75 Tang D Z, Du Y X, Lu M X, et al. Progress in the mutual effects between AC interference and the cathodic protection of buried pipelines [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 351
唐德志, 杜艳霞, 路民旭等. 埋地管道交流干扰与阴极保护相互作用研究进展 [J]. 中国腐蚀与防护学报, 2013, 33: 351
76 He H W. Influence of AC stray current on corrosion of anti-corrosion layer defect [J]. Gas Heat, 2018, 38(11): B06
和宏伟. 交流杂散电流对防腐层缺陷的腐蚀影响 [J]. 煤气与热力, 2018, 38(11): B06
77 UNI CEN/TS 15280 Evaluation of A.C. corrosion likelihood of buried pipelines-Application to cathodically protected pipelines [S]. 2006
78 Ormellese M, Lazzari L, Brenna A, et al. Proposal of CP criterion in the presence of AC-interference [A]. Corrosion 2010 [C]. San Antonio, Texas, 2010
79 Di Biase L, Cigna R, Fumei O. AC corrosion and cathodic protection of buried pipelines [A]. Corrosion 2010 [C]. San Antonio, Texas, 2010
80 , Corrosion of metals and alloys-Determination of AC corrosion-Protection criteria [S]. 2015
81 NACE SP0169-2013, Control of external corrosion on underground or submerged metallic piping systems [S]. 2013
82 Li Z, Li C Y, Qian H C, et al. Corrosion behavior of X80 steel with coupled coating defects under alternating current interference in alkaline environment [J]. Materials, 2017, 10: 720
83 Ding Q M, Wang Y J, Cui Y Y, et al. Effect of AC interference on the corrosion behavior of pipeline steel under disbonded coatings [J]. Corros. Prot., 2018, 39: 349
丁清苗, 王宇君, 崔艳雨等. 交流干扰对剥离涂层下管线钢腐蚀行为的影响 [J]. 腐蚀与防护, 2018, 39: 349
84 Wang L W, Cheng L J, Li J R, et al. Combined effect of alternating current interference and cathodic protection on pitting corrosion and stress corrosion cracking behavior of X70 pipeline steel in near-neutral pH environment [J]. Materials, 2018, 11: 465
85 Lu M X, Tang D Z, Du Y X, et al. Investigation on corrosion of zinc ribbon under alternating current [J]. Corros. Eng. Sci. Technol., 2015, 50: 256
86 Sun L F. Practice of comprehensive detection and evaluation of AC stray current discharged by solid state decoupler combined with ground bed material [J]. Total Corros. Control, 2019, 33(8): 62
孙磊峰. 固态去耦合器接地排流设施全面性检测评价的实践 [J]. 全面腐蚀控制, 2019, 33(8): 62
87 Liu B, Zhao Y G, Zhao S H, et al. Analysis of interference of high-speed rail current with cathodic protection of pipeline and countermeasures [J]. Corros. Sci. Prot. Technol., 2018, 30: 94
刘波, 赵永刚, 赵书华等. 高铁运行电流对管道阴极保护干扰分析与防护措施 [J]. 腐蚀科学与防护技术, 2018, 30: 94
88 Liu G. Application of solid state-decoupler in AC interference mitigation of pipelines [J]. Oil Gas Storage Transport., 2016, 35: 449
刘国. 固态去耦合器在管道交流干扰防护中的应用 [J]. 油气储运, 2016, 35: 449
[1] WANG Dongliang, DING Huaping, MA Yunfei, GONG Pan, WANG Xinyun. Research Progress on Corrosion Resistance of Metallic Glasses[J]. 中国腐蚀与防护学报, 2021, 41(3): 277-288.
[2] ZHUANG Dawei, DU Yanxia, CHEN Taotao, LU Danping. Research on Boundary Condition Inversion Method for Numerical Simulation of Regional Cathodic Protection and Its Application[J]. 中国腐蚀与防护学报, 2021, 41(3): 346-352.
[3] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[4] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[5] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[6] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[7] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[8] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[9] ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[10] Guirong WANG,Yawei SHAO,Yanqiu WANG,Guozhe MENG,Bin LIU. Effect of Applied Cathodic Protection Potential on Cathodic Delamination of Damaged Epoxy Coating[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[11] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[12] Xijing WANG, Boshi WANG, Chao YANG, Yan YANG, Bin SHEN. Hot Corrosion of Pure Nickel and Its Weld Joints in Molten Na2SO4-K2SO4 Salts[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[13] Ping QIU, Lianjie YANG, Yu SONG, Hongfei YANG. Influence of DMF Modified TiO2 Film on the Photogenerated Cathodic Protection Behavior[J]. 中国腐蚀与防护学报, 2018, 38(3): 289-295.
[14] Guofu OU, Lulu ZHAO, Kai WANG, Kuanxin WANG, Haozhe JIN. Dew-Point Corrosion Behavior of 10# Carbon Steel inHCl-H2O Environment[J]. 中国腐蚀与防护学报, 2018, 38(1): 33-38.
[15] Dahai XIA, Shizhe SONG, Jihui WANG, Zhimng GAO, Wenbin HU. Research Progress on Corrosion Mechanism of Tinned Steel Sheet Used for Food Parkaging[J]. 中国腐蚀与防护学报, 2017, 37(6): 513-518.
No Suggested Reading articles found!