Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (2): 123-130    DOI: 10.11902/1005.4537.2019.217
Current Issue | Archive | Adv Search |
Effect of Preparation and Surface Modification of TiO2 on Its Photoelectrochemical Cathodic Protection Performance
XIE Xuan1,2, LIU Li1(), WANG Fuhui1
1 Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(4556KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Co(OH)2 was deposited firstly on the surface of nanotube TiO2 by successive ionic layer adsorption and reaction method, and then deposited Co(OH)2 was transformed partially into CoOx by post heat treatment, therewith the Co(OH)2/CoOx modified TiO2 nanotube was acquired as high performance photoanode material. By assessing the effect of the times of Co(OH)2 deposition, as well as the temperature and holding time of heat treatment on the performance of the Co(OH)2/CoOx modified TiO2 nanotube, the optimal processing parameters were determined for the preparation of the best photoanode material. Besides, the relevant mechanism was proposed to interpret the role of Co(OH)2/CoO surface modification in the enhancement of photoelectric performance of the TiO2 nanotube.

Key words:  TiO2      Co(OH)2/CoOx modification      process control      photoelectric property      cathodic      protection     
Received:  13 June 2019     
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51622106);National Natural Science Foundation of China(51871049)
Corresponding Authors:  LIU Li     E-mail:  liuli@mail.neu.edu.cn

Cite this article: 

XIE Xuan, LIU Li, WANG Fuhui. Effect of Preparation and Surface Modification of TiO2 on Its Photoelectrochemical Cathodic Protection Performance. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 123-130.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.217     OR     https://www.jcscp.org/EN/Y2020/V40/I2/123

Fig.1  Flow chart of process parameter selection for heat treatment process of preparation of TiO2 nanotubes (a) and Co(OH)2 and CoOx surface modification (b)
Fig.2  SEM image of microstructures of TiO2 nanotubes
Fig.3  Open circuit potential of TiO2 with different heat treatment temperatures: (a) without modification, (b) Co(OH)2 modified, (c) the relationship between E under illumination and heat treatment temperature of TiO2 preparation
Fig.4  Effect of different heat treatment temperatures on protective current density of TiO2 without modification (a), with Co(OH)2 modification (b), and the relationship between current density under illumination and heat treatment temperature of TiO2 preparation (c)
Fig.5  Influence of Co(OH)2 modification times on protec-tive potential of TiO2
Fig.6  Influence of Co(OH)2 modification times on protective potential (E) (a), protective current density of CoOx modified TiO2 (b) and the relationship between E under illumination and Co(OH)2 modification times (c)
Fig.7  Influence of heat treatment fixation temperature on protective potential (E) of CoOx modified TiO2 (a) and the relationship between E under illumination and heat treatment fixation temperature (b)
Fig.8  Influence of heat treatment fixation preservation time on protective potential (E) of CoOx modified TiO2 (a) and the relationship between E under illumination and heat treatment fixation preservation time (b)
Fig.9  Proposed mechanism for the enhanced photoelectrochemical cathodic protection performance of Co(OH)2/CoOx modified TiO2 films on 304 stainless steel under illumination
[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37
[2] Li S N, Fu J J. Improvement in corrosion protection properties of TiO2 coatings by chromium doping [J]. Corros. Sci., 2013, 68: 101
[3] Chen Y Q, Zhao S, Chen M Y, et al. Sandwiched polydopamine (PDA) layer for titanium dioxide (TiO2) coating on magnesium to enhance corrosion protection [J]. Corros. Sci., 2015, 96: 67
[4] Lei C X, Feng Z D, Zhou H. Visible-light-driven photogenerated cathodic protection of stainless steel by liquid-phase-deposited TiO2 films [J]. Electrochim. Acta, 2012, 68: 134
[5] Akpan U G, Hameed B H. The advancements in sol-gel method of doped-TiO2 photocatalysts [J]. Appl. Catal., 2010, 375A: 1
[6] Kumar S G, Devi L G. Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics [J]. J. Phys. Chem., 2011, 115A: 13211
[7] Yuan J N, Tsujikawa S. Photo-effects of sol-gel derived TiO2 coating on carbon steel in alkaline solution [J]. Zairyo-to-Kankyo, 1995, 44: 534
[8] Pablos C, Marugán J, Van Grieken R, et al. Correlation between photoelectrochemical behaviour and photoelectrocatalytic activity and scaling-up of P25-TiO2 electrodes [J]. Electrochim. Acta, 2014, 130: 261
[9] Liu G, Yang H G, Pan J, et al. Titanium dioxide crystals with tailored facets [J]. Chem. Rev., 2014, 114: 9559
[10] Pan J, Liu G, Lu G Q, et al. On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals [J]. Angew. Chem. Int. Ed., 2011, 50: 2133
[11] Xie Y P, Yu Z B, Liu G, et al. CdS-mesoporous ZnS core-shell particles for efficient and stable photocatalytic hydrogen evolution under visible light [J]. Energy Environ. Sci., 2014, 7: 1895
[12] Liu G, Wang L Z, Yang H G, et al. Titania-based photocatalysts-crystal growth, doping and heterostructuring [J]. J. Mater. Chem., 2010, 20: 831
[13] Niu P, Yin L C, Yang Y Q, et al. Increasing the visible light absorption of graphitic carbon nitride (melon) photocatalysts by homogeneous self-modification with nitrogen vacancies [J]. Adv. Mater., 2014, 26: 8046
[14] Zhang G G, Zang S H, Wang X C. Layered Co(OH)2 deposited polymeric carbon nitrides for photocatalytic water oxidation [J]. ACS Catal., 2015, 5: 941
[15] Lee R L, Tran P D, Pramana S S, et al. Assembling graphitic-carbon-nitride with cobalt-oxide-phosphate to construct an efficient hybrid photocatalyst for water splitting application [J]. Catal. Sci. Technol., 2013, 3: 1694
[16] Yang J H, Wang D G, Han H X, et al. Roles of cocatalysts in photocatalysis and photoelectrocatalysis [J]. Acc. Chem. Res., 2013, 46: 1900
[17] Rosseler O, Shankar M V, Du M K L, et al. Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2 (anatase/rutile) photocatalysts: Influence of noble metal and porogen promotion [J]. J. Catal., 2010, 269: 179
[18] Zhu M S, Chen P L, Liu M H. High-performance visible-light-driven plasmonic photocatalysts Ag/AgCl with controlled size and shape using graphene oxide as capping agent and catalyst promoter [J]. Langmuir, 2013, 29: 9259
[19] Jacobs G, Graham U, Chenu E, et al. Low-temperature water-gas shift: Impact of Pt promoter loading on the partial reduction of ceria and consequences for catalyst design [J]. J. Catal., 2005, 229: 499
[20] Liu M Y, You W S, Lei Z B, et al. Water reduction and oxidation on Pt-Ru/Y2Ta2O5N2 catalyst under visible light irradiation [J]. Chem. Commun., 2004, (19): 2192
[21] Wang L, Dionigi F, Nguyen N T, et al. Tantalum nitride nanorod arrays: Introducing Ni-Fe layered double hydroxides as a cocatalyst strongly stabilizing photoanodes in water splitting [J]. Chem. Mater., 2015, 27: 2360
[22] Hutchings G S, Zhang Y, Li J, et al. In situ formation of cobalt oxide nanocubanes as efficient oxygen evolution catalysts [J]. J. Am. Chem. Soc., 2015, 137: 4223
[23] Irshad A, Munichandraiah N. An oxygen evolution Co-Ac catalyst-the synergistic effect of phosphate ions [J]. Phys. Chem. Chem. Phys., 2014, 16: 5412
[24] Qorbani M, Naseri N, Moshfegh A Z. Hierarchical Co3O4/Co(OH)2 nanoflakes as a supercapacitor electrode: Experimental and semi-empirical model [J]. ACS Appl. Mater. Interfaces, 2015, 7: 11172
[25] Grünert W, Brückner A, Hofmeister H, et al. Structural properties of Ag/TiO2 catalysts for acrolein hydrogenation [J]. J. Phys. Chem., 2004, 108B: 5709
[26] Lin C H, Chao J H, Liu C H, et al. Effect of calcination temperature on the structure of a Pt/TiO2 (B) nanofiber and its photocatalytic activity in generating H2 [J]. Langmuir, 2008, 24: 9907
[27] Wei N, Liu Y, Zhang T T, et al. Hydrogenated TiO2 nanotube arrays with enhanced photoelectrochemical property for photocathodic protection under visible light [J]. Mater. Lett., 2016, 185: 81
[28] Yang J H, Yan H J, Wang X L, et al. Roles of cocatalysts in Pt-PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production [J]. J. Catal., 2012, 290: 151
[29] Lin Z Q, Lai Y K, Hu R G, et al. A highly efficient ZnS/CdS@TiO2 photoelectrode for photogenerated cathodic protection of metals [J]. Electrochim. Acta, 2010, 55: 8717
[30] Hu J, Zhu Y F, Liu Q, et al. SnO2 nanoparticle films prepared by pulse current deposition for photocathodic protection of stainless steel [J]. J. Electrochem. Soc., 2015, 162: C161
[31] Zhang J J, Ur Rahman Z, Zheng Y B, et al. Nanoflower like SnO2-TiO2 nanotubes composite photoelectrode for efficient photocathodic protection of 304 stainless steel [J]. Appl. Surf. Sci., 2018, 457: 516
[32] Chen R Z, Zhen C, Yang Y Q, et al. Boosting photoelectrochemical water splitting performance of Ta3N5 nanorod array photoanodes by forming a dual co-catalyst shell [J]. Nano Energy, 2019, 59: 683
[33] Yu J C, Lin J, Lo D, et al. Influence of thermal treatment on the adsorption of oxygen and photocatalytic activity of TiO2 [J]. Langmuir, 2000, 16: 7304
[34] Momeni M M, Mahvari M, Ghayeb Y. Photoelectrochemical properties of iron-cobalt WTiO2 nanotube photoanodes for water splitting and photocathodic protection of stainless steel [J]. J. Electroanal. Chem., 2019, 832: 7
[35] Liu Y P, Li Y H, Peng F, et al. 2H- and 1T- mixed phase few-layer MoS2 as a superior to Pt co-catalyst coated on TiO2 nanorod arrays for photocatalytic hydrogen evolution [J]. Appl. Catal., 2019, 241B: 236
[36] Sun M M, Chen Z Y, Bu Y Y. Enhanced photoelectrochemical cathodic protection performance of H2O2-treated In2O3 thin-film photoelectrode under visible light [J]. Surf. Coat. Technol., 2015, 266: 79
[37] Sun M M, Chen Z Y, Bu Y Y. Enhanced photoelectrochemical cathodic protection performance of the C3N4@In2O3 nanocomposite with quasi-shell-core structure under visible light [J]. J. Alloy. Compd., 2015, 618: 734
[38] Bu Y Y, Chen Z Y, Li W B, et al. High-efficiency photoelectrochemical properties by a highly crystalline CdS-sensitized ZnO nanorod array [J]. ACS Appl. Mater. Interfaces, 2013, 5: 5097
[39] Sun M M, Chen Z Y, Bu Y Y, et al. Effect of ZnO on the corrosion of zinc, Q235 carbon steel and 304 stainless steel under white light illumination [J]. Corros. Sci., 2014, 82: 77
[40] Zhang J, Liu Z. Progress in research on photo-cathodic protection [J]. Corros. Prot., 2015, 36: 250
(张菁, 刘峥. 光致阴极保护研究进展 [J]. 腐蚀与防护, 2015, 36: 250)
[41] Zhen C, Wang L Z, Liu L, et al. Nonstoichiometric rutile TiO2 photoelectrodes for improved photoelectrochemical water splitting [J]. Chem. Commun., 2013, 49: 6191
[42] Li N, Liu G, Zhen C, et al. Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly [J]. Adv. Funct. Mater., 2011, 21: 1717
[43] Bu Y Y, Chen Z Y. Role of polyaniline on the photocatalytic degradation and stability performance of the polyaniline/silver/silver phosphate composite under visible light [J]. ACS Appl. Mater. Interfaces, 2014, 6: 17589
[44] Song L Y, Ma X M, Chen Z Y, et al. The role of UV illumination on the initial atmospheric corrosion of 09CuPCrNi weathering steel in the presence of NaCl particles [J]. Corros. Sci., 2014, 87: 427
[45] Bu Y, Chen Z. Effect of hydrogen treatment on the photoelectrochemical properties of quantum dots sensitized ZnO nanorod array [J]. J. Power Sources, 2014, 272: 647
[46] Zhu X R. Corrosion and Protection of Metals in Marine Environment [M]. Beijing: National Defense Industry Press, 1999
(朱相荣. 金属材料的海洋腐蚀与防护 [M]. 北京: 国防工业出版社, 1999)
[47] Xie X, Liu L, Chen R Z, et al. Long-term photoelectrochemical cathodic protection by Co(OH)2-modified TiO2 on 304 stainless steel in marine environment [J]. J. Electrochem. Soc., 2018, 165: H3154
[1] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[3] ZHOU Yu, ZHANG Haibing, DU Min, MA Li. Effect of Cathodic Potentials on Hydrogen Embrittlement of 1000 MPa Grade High Strength Steel in Simulated Deep-sea Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[4] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[5] LIU Wei, DU Kaifa, HU Xiaohong, WANG Dihua. Review on Research Status of Common Liquid Metal Corrosion in Liquid Metal Energy Storage Batteries[J]. 中国腐蚀与防护学报, 2020, 40(2): 81-86.
[6] ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[7] Zhengquan WANG,Yantao LI,Weichen XU,Lihui YANG,Congtao SUN. Analysis of Global Research Status and Development Trends in the Field of Corrosion and Protection: Based on Bibliometrics and Information Visualization Analysis[J]. 中国腐蚀与防护学报, 2019, 39(3): 201-214.
[8] Guirong WANG,Yawei SHAO,Yanqiu WANG,Guozhe MENG,Bin LIU. Effect of Applied Cathodic Protection Potential on Cathodic Delamination of Damaged Epoxy Coating[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[9] Haisheng TONG,Yanhui SUN,Yanjing SU,Xiaolu PANG,Kewei GAO. Investigation on Hydrogen-induced Cracking Behavior of 2205 Duplex Stainless Steel Used for Marine Structure[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[10] Tong LIAO,Zheng MA,Leilei LI,Xiumin MA,Xiutong WANG,Baorong HOU. Light-generated Cathodic Protection Properties of Fe2O3/TiO2 Nanocomposites for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[11] Delin LAI,Gang KONG,Chunshan CHE. Effect of Sodium Silicate Sealing on Corrosion Resistance of TiO2Conversion Film on Hot-dip Galvanized[J]. 中国腐蚀与防护学报, 2018, 38(6): 607-614.
[12] Siqi ZHANG,Nan DU,Meifeng WANG,Shuaixing WANG,Qing ZHAO. Effect of Cathode Area on Stable Pitting Growth Rate of 304 Stainless Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.
[13] Wang YAO, Herong ZHOU, Kui XIAO, Pengyang LIU, Jiayong DAN, Run WU. Corrosion Behavior of DC06 Extra Deep Drawing Cold Rolled Steel in Neutral Salt Spray Test[J]. 中国腐蚀与防护学报, 2018, 38(3): 241-247.
[14] Liang CHANG, Chao SHI, Yawei SHAO, Yanqiu WANG, Bin LIU, Guozhe MENG. Effect of Phytic Acid Conversion Film on Corrosion Resistance of Epoxy Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[15] Qi GUI, Dajiang ZHENG, Guangling SONG. Electrochemically Accelerated Evaluation of Protectiveness for an Alkyd Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
No Suggested Reading articles found!