Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (2): 142-147    DOI: 10.11902/1005.4537.2016.010
Orginal Article Current Issue | Archive | Adv Search |
Relationship between Structure of Imidazoline Derivates with Corrosion Inhibition Performance in CO2/H2S Environment
Jingmao ZHAO1,2(),Qifeng ZHAO1,Riujing JIANG1,2
1 College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
2 Beijing University of Chemical Technology, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing 100029, China
Download:  HTML  PDF(1557KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Four oleic acid-based imidazoline derivates with different hydrophilic groups were synthesized in this work. The performance of the synthesized products, such as the hydrophobicity and hydrophily, the adsorption and corrosion inhibition on the 20# carbon steel in flow CO2/H2S environment were assessed by means of measurements of contact angle, AFM force curve and mass loss, as well as molecular dynamics simulation. The results showed that under static conditions the imidazoline derivate with two amino ethylene units processes the best inhibition efficiency of 86.8% for the dosage of 100 mg/L, while under high flow rate (5.5 m/s), the inhibition efficiency of imidazoline with three amino ethylene units was the highest, i.e. 73.6% for the dosage of 100 mg/L. The hydrophobicity, adhesion force and adsorption energy of imidazolines were enhanced gradually with the increase of the number of amino ethylene unit.

Key words:  CO2/H2S      imidazoline derivate      hydrophilic group      flow velocity      contact angle      AFM      MD     
Received:  10 January 2016     
Fund: Supported by National Natural Science Foundation of China (51171013)

Cite this article: 

Jingmao ZHAO,Qifeng ZHAO,Riujing JIANG. Relationship between Structure of Imidazoline Derivates with Corrosion Inhibition Performance in CO2/H2S Environment. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 142-147.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.010     OR     https://www.jcscp.org/EN/Y2017/V37/I2/142

Fig.1  Molecular structures of the four imidazoline derivatives
Inhibitor Left / deg Right / deg Average / deg
Blank 21.8 20.0 20.9
IM 65.6 67.5 66.6
IM-2 74.4 74.0 74.2
IM-3 78.7 78.9 78.8
IM-4 86.1 86.1 86.1
Table 1  Contact angles of H2O on the samples adsorpted by imidazoline derivates
Fig.2  Force curves of the surfaces of the samples adsorpted by imidazoline derivates
Fig.3  Corrosion rates of 20# carbon steel at different flow rates
Fig.4  Inhibition efficiencies of four imidazoline derivatives at different flow rates
Fig.5  Variations of the inhibition efficiencies of imidazoline derivatives with contact angle (a) and adhesion force (b) at different flow velocities
Fig.6  Equilibrium adsorption configurations of four imidazoline derivatives: (a) IM, (b) IM-2, (c) IM-3, (d) IM-4
Inhibitor Etotal / kJmol-1 Esurface / kJmol-1 Emolecule / kJmol-1 Eadsorption / kJmol-1
IM -4.7699862×105 -4.7677742×105 -8.9560×101 -1.3164×102
IM-2 -4.7667153×105 -4.7677742×105 2.8381×102 -1.7792×102
IM-3 -4.7674717×105 -4.7677742×105 3.3668×102 -3.0643×102
IM-4 -4.7666814×105 -4.7677742×105 4.8057×102 -3.7129×102
Table 2  Adsorption energies of four imidazoline derivatives on Fe
[1] Chen W, Pan Y Q, Mei P, et al.Progress in corrosion and inhibition technology in CO2/H2S environment[J]. Environ. Prot. Oil Gas Fields, 2007, 17(3): 1
[1] (陈武, 潘阳秋, 梅平等. CO2/H2S共存腐蚀与缓蚀技术研究进展[J]. 油气田环境保护, 2007, 17(3): 1)
[2] Liu M, Wang Y.Corrosion factor research of gas pipeline in gas field containing sulfur[J]. Pipeline Tech. Equip., 2011, (4): 43
[2] (刘明, 王毅. 高含硫气田集输管线腐蚀因素分析[J]. 管道技术与设备, 2011, (4): 43)
[3] Hu S Q.Design and synthesis of corrosion inhibitors in oil and gas fields with high H2S and CO2 [D]. Qingdao: China University of Petroleum (East China) , 2010
[3] (胡松青. 高含H2S、CO2油气田缓蚀剂的设计与合成 [D]. 青岛: 中国石油大学 (华东) , 2010)
[4] Zhang Q, Li Q A, Wen J B, et al.Progress in research on CO2/H2S corrosion of tubular goods[J]. Corros. Prot., 2003, 24: 277
[4] (张清, 李全安, 文九巴等. CO2/H2S对油气管材的腐蚀规律及研究进展[J]. 腐蚀与防护, 2003, 24: 277)
[5] Gao Q Y, Mei P, Chen W, et al.Development on synthesis and application of imidazoline corrosion inhibitor[J]. Chem. Eng., 2006, 20(5): 18
[5] (高秋英, 梅平, 陈武等. 咪唑啉类缓蚀剂的合成及应用研究进展[J]. 化学工程师, 2006, 20(5): 18)
[6] Edwards A, Osborne C, Webster S, et al.Mechanistic studies of the corrosion inhibitor oleic imidazoline[J]. Corros. Sci., 1994, 36: 315
[7] Liu X, Zheng Y G.Inhibition behavior of two imidazoline-based inhibitors with different hydrophilic groups in single liquid phase and liquid/particle two-phase flow[J]. Acta Phys.-Chim. Sin., 2009, 25: 713
[7] (刘瑕, 郑玉贵. 流动条件下两种不同亲水基团咪唑啉型缓蚀剂的缓蚀性能[J]. 物理化学学报, 2009, 25: 713)
[8] Zhang J, Du M, Yu H H, et al.Effect of molecular structure of imidazoline inhibitors on growth and decay laws of films formed on Q235 steel[J]. Acta Phys.-Chim. Sin., 2009, 25: 525
[8] (张静, 杜敏, 于会华等. 分子结构对咪唑啉缓蚀剂膜在Q235钢表面生长和衰减规律的影响[J]. 物理化学学报, 2009, 25: 525)
[9] Hu S Q, Jia X L, Hu J C, et al.Quantum chemical analysis on molecular structures and inhibitive properties of imidazoline inhibitors[J]. J. China Univ. Pet.,(Nat. Sci. Ed), 2011, 35(1): 146
[9] (胡松青, 贾晓林, 胡建春等. 咪唑啉缓蚀剂分子结构与缓蚀性能的量子化学分析[J]. 中国石油大学学报 (自然科学版), 2011, 35(1): 146)
[10] Ochoa N, Moran F, Pébère N, et al.Influence of flow on the corrosion inhibition of carbon steel by fatty amines in association with phosphonocarboxylic acid salts[J]. Corros. Sci., 2005, 47: 593
[11] Srisuwan N, Ochoa N, Pébère N, et al.Variation of carbon steel corrosion rate with flow conditions in the presence of an inhibitive formulation[J]. Corros. Sci., 2008, 50: 1245
[12] Zhao G X, Lv X H, Han Y.Effect of flow rate on CO2 corrosion behavior of P110 steel[J]. J. Mater. Eng., 2008, (8): 5
[12] (赵国仙, 吕祥鸿, 韩勇. 流速对P110钢腐蚀行为的影响[J]. 材料工程, 2008, (8): 5)
[13] Ortega-Toledo D M, Gonzalez-Rodriguez J G, Casales M, et al. CO2 corrosion inhibition of X-120 pipeline steel by a modified imidazoline under flow conditions[J]. Corros. Sci., 2011, 53: 3780
[14] Zhang H H, Pang X L, Zhou M, et al.The behavior of pre-corrosion effect on the performance of imidazoline-based inhibitor in 3wt.%NaCl solution saturated with CO2[J]. Appl. Surf. Sci., 2015, 356: 63
[15] Zhang J.Theoretical investigation on corrosion inhibition mechanism of imidazoline inhibitors [D]. Qingdao: China University of Petroleum (East China), 2008
[15] (张军. 咪唑啉类缓蚀剂缓蚀机理的理论研究 [D]. 青岛: 中国石油大学 (华东) , 2008)
[16] Chen Z Y.Investigation on inhibition mechanism based on AFM and electrochemical methods [D]. Wuhan: Huazhong University of Science and Technology, 2010
[16] (陈振宇. 基于原子力显微镜和电化学方法的缓蚀剂机理研究 [D]. 武汉: 华中科技大学, 2010)
[17] Qu J E, Guo X P, Huang J Y, et al.Study on adsorption behavior of inhibitors by electrochemical methods and AFM force curves[J]. J. Instrum. Anal., 2007, 26: 110
[17] (屈钧娥, 郭兴蓬, 黄金营等. 缓蚀剂吸附行为的电化学及AFM力曲线研究[J]. 分析测试学报, 2007, 26: 110)
[18] Jiang X, Luo S Z, Zheng Y G, et al.Study on inhibitor properties of quaternary alkynoxymethyl amine and imidazoline for N80 seamless steel in 3% NaCl saturated by CO2 [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 10
[18] (蒋秀, 骆素珍, 郑玉贵等. 炔氧甲基季胺盐和咪唑啉对N80在饱和CO2的3%NaCl溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2004, 24: 10)
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[3] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[4] Guangyi CAI,Haowei WANG,Weihang ZHAO,Zehua DONG. Effect of Nano-CeO2 on Anticorrosion Performance for Polyurethane Coating[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.
[5] Jingmao ZHAO,Xiong ZHAO,Ruijing JIANG. Effect of Double Bonds in Hydrophobic Chains on Corrosion Inhibition Performance of Imidazoline Derivates in Dynamic H2S/CO2 Environment[J]. 中国腐蚀与防护学报, 2015, 35(6): 505-509.
[6] ZHAO Tong, ZHAO Jingmao, JIANG Ruijing. Effect of Flow Velocity and Carbon Chain Length on Corrosion Inhibition Performance of Imidazoline Derivates in High Pressure CO2 Environment[J]. 中国腐蚀与防护学报, 2015, 35(2): 163-168.
[7] FAN Fengqin, SONG Jiwen, LI Chengjie, DU Min. Effect of Flow Velocity on Cathodic Protection of DH36 Steel in Seawater[J]. 中国腐蚀与防护学报, 2014, 34(6): 550-557.
[8] LIU Yuexue, LIU Liewei, DONG Meng, ZHANG Datong. RELATIONSHIP BETWEEN CHEMICAL MOLECULAR STRUCTURE AND ANTI-SULFUR PROPERTIES AND INHIBITION MECHANISM OF CORROSION INHIBITORS[J]. 中国腐蚀与防护学报, 2012, 32(2): 151-156.
[9] LIU Xiaolan, XU Yaxin, ZHANG Tao, SHAO Yawei, MENG Guozhe, WANG Fuhui. EFFECT OF ALTERNATING VOLTAGE (AV)MODULATED PASSIVATION ON CORROSION RESISTANCE OF AZ91D MAGNESIUM ALLOY
Ⅱ-Effect of Alternating Voltage (AV) Modulated Passivation on Surface Properties of AZ91D Magnesium Alloy
[J]. 中国腐蚀与防护学报, 2010, 30(3): 187-191.
[10] YAN Jinchen ZHAO Lifeng ZHAO Yongtao. EMPIRICAL MODE DECOMPOSITION IN THE DE-NOISING OF COULOSTATICALLY-INDUCED TRANSIENTS[J]. 中国腐蚀与防护学报, 2009, 29(3): 205-209.
[11] . The effect of the sulfate reducing bacteria biofilm on phase boundary between HSn70-1AB copper alloy and solution[J]. 中国腐蚀与防护学报, 2008, 28(5): 265-270 .
[12] . Study on corrosion mechanism of carbon steel induced by Galvanic coupling in inhibitor solution[J]. 中国腐蚀与防护学报, 2008, 28(2): 90-94 .
[13] . Study on Electrochemical Behavior of HAl77-2 Brass in Flowing Seawater by Using Rotating Ring Electrode[J]. 中国腐蚀与防护学报, 2008, 28(1): 16-19 .
[14] . INVESTIGATION OF THE ADSORPTION BEHAVIOR OF DODECYLAMINE ON CARBON STEEL BY AFM AND ELECTROCHEMICAL METHODS[J]. 中国腐蚀与防护学报, 2007, 27(5): 288-291 .
[15] June Qv; Xingpeng Guo. Corrosion Inhibition and Adsorption Mechanism of Dodecylamine for Copper-Nickel Alloy in NaCl Solutions[J]. 中国腐蚀与防护学报, 2006, 26(1): 48-52 .
No Suggested Reading articles found!