Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (4): 321-327    DOI: 10.11902/1005.4537.2015.177
Current Issue | Archive | Adv Search |
Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB
Jinheng LUO1(),Congmin XU2,Dongping YANG2
1. State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, CNPC Tubular Goods Research Institute, Xi'an 710077, China
2. School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
Download:  HTML  PDF(8298KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of sulfate reducing bacteria (SRB) on stress corrosion cracking (SCC) behavior of X100 pipeline steel was investigated in artificial solution, which simulated the acid soil medium in the area of Yingtan at the Southeast China by means of slow strain rate test (SSRT) and scanning electron microscope (SEM). The results show that X100 pipeline steel has higher SCC susceptibility in the sterile artificial solution than that with SRB. The failure mode is transgranular cracking in both the two solutions. These results suggest that SRB inhibits the brittleness and reduces the SCC susceptibility of X100 pipeline steel, which may be ascribed to that SRB can breed rapidly and form a compact biofilm on X100 pipeline steel surface, then partly block the migration of corrosive Cl- onto the X100 steel surface.

Key words:  X100 pipeline steel      stress corrosion cracking (SCC)      sulfate reducing bacteria (SRB)      acid soil     
Received:  15 November 2015     

Cite this article: 

Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB. Journal of Chinese Society for Corrosion and protection, 2016, 36(4): 321-327.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.177     OR     https://www.jcscp.org/EN/Y2016/V36/I4/321

Fig.1  SSRT curves of X100 pipeline steel in air (a) and Yingtan soil simulated solution (b) (M: parent metal sample; W: welded metal sample)
Sample number Fracutre life
TF / h
Fracute strength
σb / MPa
Strain
ε / %
Percent elongation
δ / %
Percent reduction in area ψ / % Strength loss coefficient Iσ / % Percent elongation loss coefficient
Iδ / %
Percent reduction loss coefficient Iψ / %
K-M 85.64 874 29.64 19.00 74.96 --- --- ---
K-W 71.51 830 25.63 15.58 62.04 --- --- ---
YT-M 63.00 838 22.56 17.92 54.74 4.12 5.70 26.97
YT-W 44.5 852 18.41 15.33 44.83 -2.65 1.60 28.89
YT-M-SRB 56.52 861 20.30 17.58 68.17 1.49 7.46 9.05
YT-W-SRB 44.00 849 18.62 20.83 62.50 1.33 -33.69 0.86
Table 1  Stress corrosion parameters and results of X100 pipeline steel in different mediums
Fig.2  SEM images of fracture surfaces of X100 pipeline steel after SSRT in air: (a) base metal macro-fracture; (b) weld metal macro-fracture; (c) base metal micro-fracture; (d) weld metal micro-fracture
Fig.3  SEM images of fracture surfaces of X100 pipeline steel after SSRT in Yingtan solutions without SRB (a1~a3) and with SRB (b1~b3)
Fig.4  SEM images of fracture surfaces of X100 pipeline steel weld samples after SSRT in Yingtan solutions without SRB (a1~a3) and with SRB (b1~b3)
Fig.5  SEM images of the side near fracture surfaces of X100 pipeline steel after SSRT in air: (a) basemetal; (b) weld metal
Fig.6  SEM images of the side near fracture surfaces of X100 steel after SSRT in Yingtan soil simulated solutions:(a) base metal in sterile solution; (b) base metal in SRB solution; (c) weld metal in sterile solution; (d) weld metal in SRB solution
[1] Zhang C, Cheng Y F.Synergistic effects of hydrogen and stress on corrosion of X100 pipeline steel in a near-neutral pH solution[J]. Mater. Eng. Perform., 2010, 19: 1284
[2] Zhang B, Qian C W, Wang Y M.Development and application of high-grade pipeline steel at home and abroad[J]. Pet. Eng. Constr., 2012, 38(1): 1
[2] (张斌, 钱成文, 王玉梅. 国内外高钢级管线钢的发展及应用 [J]. 石油工程建设, 2012, 38(1): 1
[3] Argonne National Laboratory.Environmentally acceptable methods control pipeline corrosion at lower cost[J]. Mater. Perform., 1997, 36(2): 71
[4] Peabody A W.Pipeline Corrosion Control [M]. 2nd Ed. Beijing: Chemical Industry Press, 2004
[4] (皮博迪A W. 管线腐蚀控制 [M]. 第2版. 北京: 化学工业出版社, 2004)
[5] Wu T Q, Xu J, Sun C.Microbiological corrosion of pipeline steel under yield stress in soil environment[J]. Corros. Sci., 2014, 88: 291
[6] Cote C, Rosas O, Sztyler M.Corrosion of low carbon steel by microorganisms from the 'pigging' operation debris in water injection pipelines[J]. Bioelectrochemistry, 2014, 97: 97
[7] Chen X, Wang G F, Gao F J.Effects of sulphate-reducing bacteria on crevice corrosion in X70 pipeline steel under disbonded coatings[J]. Corros. Sci., 2015, 101: 1
[8] Fang B Y, Atrens A, Wang J Q.Review of stress corrosion cracking of pipeline steels in "low" and "high" pH solutions[J]. J. Mater. Sci., 2003, 38: 127
[9] Marchal R, Chaussepied B, Warzywoda M.Effect of ferrous ion availability on growth of a corroding SRB[J]. Int. Biodeterior. Biodegrad., 2001, 47: 125
[10] Bouaeshi W, Ironside S, Eadie R.Research and cracking implications from an assessment of two variants of near-neutral pH crack colonies in liquid pipelines[J]. Corrosion, 2007, 63: 648
[11] Park J J, Pyun S I, Kho K H Na. Effect of passivity of the oxide film on low-pH stress corrosion cracking of API 5L X-65 pipeline steel in bicarbonate solution[J]. Corrosion, 2002, 58: 329
[12] Javaherdashtia R, Raman R K S, Panter C, et al. Microbiologically assisted stress corrosion cracking of carbon steel in mixed and pure cultures of sulfate reducing bacteria[J]. Int. Biodeterior. Biodegrad., 2006, 58: 27
[13] Eslami A, Fang B, Kania R.Stress corrosion cracking initiation under the disbonded coating of pipeline steel in near-neutral pH environment[J]. Corros. Sci., 2010, 52: 3750
[14] Abedi S Sh, Abdolmaleki A, Adibi N.Failure analysis of SCC and SRB induced cracking of a transmission oil products pipeline[J]. Eng. Fail. Anal., 2007, 14: 250
[15] Biezma M V.The role of hydrogen in microbiologically influenced corrosion and stress corrosion cracking[J]. Int. J. Hydrog. Energy, 2001, 26: 515
[16] Wu T Q, Yan M C, Zeng D C.Stress corrosion cracking of X80 steel in the presence of sulfate-reducing bacteria[J]. J. Mater. Sci. Technol., 2015, 31(4): 413
[17] Li X G, Du C W, Dong C F.Corrosion Behavior and Experimental Research of X70 Steel [M]. Beijing: Science Press, 2006
[17] (李晓刚, 杜翠微, 董超芳. X70钢的腐蚀行为与试验研究 [M]. 北京: 科学出版社, 2006)
[18] Shu D L, Feng Y, Chen J B.Engineering Materials Mechanical Performance [M]. Beijing: Machine Industry Press, 2005
[18] (束德林, 凤仪, 陈九磅. 工程材料力学性能 [M]. 北京: 机械工业出版社, 2005)
[19] Hernandez G, Kucern V, Thierry D, et al.Corrosion inhibition of steel by bacteria[J]. Corrosion, 1994, 50(8): 603
[20] Videla H A.Mechanisms of MIC: Yesterday, today and tomorrow[C]. MIC-An International Perspective Symposium, Extrin Corrosion Consultants [A]. Perth, 2007
[1] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[2] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[3] Libao YU, Maocheng YAN, Binbin WANG, Yun SHU, Jin XU, Cheng SUN. Microbial Corrosion of Q235 Steel in Acidic Red Soil Environment[J]. 中国腐蚀与防护学报, 2018, 38(1): 10-17.
[4] ZHAO Yang, LIANG Ping, SHI Yanhua, ZHANG Yunxia. Influence of Environmental Factors on Property of Passive Film Formed on X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2015, 35(2): 113-121.
[5] ZHANG Xiuyun, SHI Zhiqiang, WANG Yanfang, LIU Mingxing, YANG Shengsheng. Corrosion Behavior of X100 Pipeline Steel in Simulated Solution of Alkaline Soil[J]. 中国腐蚀与防护学报, 2015, 35(1): 33-37.
[6] WU Tangqing, DING Wancheng, ZENG Dechun, XU Changfeng, YAN Maocheng, XU Jin, YU Changkun, SUN Cheng. Microbiologically Induced Corrosion of X80 Pipeline Steel in an Acid Soil Solution: (I) Electrochemical Analysis[J]. 中国腐蚀与防护学报, 2014, 34(4): 346-352.
[7] WU Tangqing, YANG Pu, ZHANG Mingde, XU Jin, YAN Maocheng, YU Changkun, SUN Cheng. Microbiologically Induced Corrosion of X80 Pipeline Steel in an Acid Soil Solution: (II) Corrosion Morphology and Corrosion Product Analysis[J]. 中国腐蚀与防护学报, 2014, 34(4): 353-358.
[8] WANG Bin, ZHOU Cui, LI Liangjun, HU Hongmei, ZHU Jiaxiang. Resistance to Hydrogen Induced Corrosion Cracking of Weld Joint of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2014, 34(3): 237-242.
[9] ZHAO Yang,LIANG Ping,SHI Yanhua,WANG Bingxin,LIU Feng,WU Zhanwen. Comparison of Passive Films on X100 and X80 Pipeline Steels in NaHCO3 Solution[J]. 中国腐蚀与防护学报, 2013, 33(6): 455-462.
[10] LIANG Ping,WANG Ying. Electrochemical Behavior of X80 Steel Covered by A Rust Layer Formed after Short-term Corrosion[J]. 中国腐蚀与防护学报, 2013, 33(5): 371-376.
[11] ZHANG Zhiming, WANG Jianqiu,HAN En-Hou, KE Wei. EFFECTS OF SURFACE CONDITION ON CORROSION AND STRESS CORROSION CRACKING OF ALLOY 690TT[J]. 中国腐蚀与防护学报, 2011, 31(6): 441-445.
[12] LI Chao, DU Cuiwei, LIU Zhiyong, LI Xiaogang. CHARACTERISTICS OF ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY FOR X100 PIPELINE STEEL IN WATER-SATURATED ACIDIC SOIL[J]. 中国腐蚀与防护学报, 2011, 31(5): 377-380.
[13] JIA Yizheng, WANG Jianqiu, HAN En-Hou, KE Wei. STRESS CORROSION CRACKING BEHAVIOR OF X100 PIPELINE STEEL IN NS4 SOLUTION UNDER CONSTANT LOADING TEST[J]. 中国腐蚀与防护学报, 2011, 31(3): 184-189.
[14] XU Jin WANG Haifeng WANG Xin SUN Cheng WANG Fuhui YU Changkun. CORROSION BEHAVIOUR OF X70 STEEL IN SIMULATED NITRIC ACID RAIN IN ACID SOIL[J]. 中国腐蚀与防护学报, 2009, 29(5): 376-381.
[15] . The effect of the sulfate reducing bacteria biofilm on phase boundary between HSn70-1AB copper alloy and solution[J]. 中国腐蚀与防护学报, 2008, 28(5): 265-270 .
No Suggested Reading articles found!