Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (2): 144-150    DOI: 10.11902/1005.4537.2014.146
Current Issue | Archive | Adv Search |
Numerical Simulation of Chloride Ion Induced Corrosion of Reinforced Concrete Structures in Marine Environment
CHENG Xudong1(), SUN Lianfang1, CAO Zhifeng1, ZHU Xingji2, ZHAO Lixin3
1. College of Pipeline and Civil Engineering in China University of Petroleum, Qingdao 266580, China
2. Department of Civil, Environmental & Architectural Engineering, Korea University, Seoul 136-701, Republic of Korea
3. Jingding Engineering & Construction Co., Ltd., Beijing 100011, China
Download:  HTML  PDF(1104KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A numerical simulation method of chloride ion induced corrosion was proposed. Based on the different corrosion mechanisms of submersion zone, tidal zone, splash zone and atmosphere zone, a series of theoretical equations were built by taking into account the effect of temperature, humidity, concrete age, chloride ion concentration and seawater convection etc. Further,a numerical simulation program was developed to simulate the service status of a bridge pier of Qingdao bay bridge by means of COMSOL coupled with factors such as temperature, humidity and chloride ion transmission etc. The results show that: (1) the numerical method can simulate chloride ion induced corrosion well; (2) the place where depassivation occurred for the reinforced steel bar corresponds to submersion zone, tidal zone, tidal zone and atmosphere zone in turn; (3) for this living example, the first depassivation of reinforced steel bars for a bare reinforced concrete bridge pier may occur in the place about -2.200 m (near to the center of tidal range zone) after in service for 25 a.

Key words:  numerical simulation of corrosion      chloride ion erosion      COMSOL      depassivation of steel bar      reinforced concrete bridge pier     
Received:  09 September 2014     
ZTFLH:  TU375  

Cite this article: 

CHENG Xudong, SUN Lianfang, CAO Zhifeng, ZHU Xingji, ZHAO Lixin. Numerical Simulation of Chloride Ion Induced Corrosion of Reinforced Concrete Structures in Marine Environment. Journal of Chinese Society for Corrosion and protection, 2015, 35(2): 144-150.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.146     OR     https://www.jcscp.org/EN/Y2015/V35/I2/144

Atmosphere zone Splash zone Tidal zone Submersion zone
Above design high water level plus
(η0 +1.0 m)
Between the atmosphere zone lower bound and design high water level minus η0 Between the splash zone lower bound and design low water level minus 1.0 m Under the tidal zone
Above 5.91 m -0.99~5.91 m -0.99~-3.16 m Under -3.16 m
Table 1  Concrete zone partition
Fig.1  Bridge pier cross-section diagram (mm) (a) and bridge pier zone partition diagram (m) (b)
Parameter name Value
Initial temperature T0/K 285.35
Initial pore relative humidity h0 0.73
Initial free chloride ion concentration Cc0 / kgm-3 0
The highest temperature in submersion zone Tmax1/K 294.65
The lowest temperature in submersion zone Tmin1/K 280.65
The highest temperature in other zones Tmax2/K 298.65
The lowest temperature in other zones Tmin2/K 271.95
The maximum environmental relative humidity hmax1 0.89
The minimum environmental relative humidity hmin1 0.68
The surface concentration of chloride ion in submersion zone Cc1 / kgm-3 21.94
The surface concentration of chloride ion in atmosphere zone Cc2 / kgm-3 5.47
Table 2  Numerical calculation related parameters
Fig.2  Changing curves of chloride ion concentration on the rebar surface with height in tidal zone (a) and splash zone (b)
Fig.3  Changing curves of chloride ion concentration with depth in submersion zone (-3.660 m) (a), tidal zone (-2.200 m) (b), splash zone (-0.990 m) (c) and atmosphere zone (6.410 m) (d)
Fig.4  Chloride ion concentrations on the rebar surface as a function of time in four zones
[1] Ji Y S. Performance and Prediction of Reinforced Concrete in Full Service Life due to Corrosion Damage [M]. Beijing: China Railway Publishing House, 2011
(姬永生. 钢筋混凝土的全寿命过程与预计[M]. 北京: 中国铁道出版社, 2011)
[2] Wang J L. Some problems of life cycle for long-span prestressed concrete box girder bridge [D]. Changsha: Hunan University, 2010
(王金磊. 大跨度梁式桥的全寿命若干问题研究 [D]. 长沙: 湖南大学, 2010)
[3] Ji Y S, Yuan Y S. Transport process of chloride in concrete under wet and dry cycles[J]. Ind. Constr., 2006, 36(12): 16
(姬永生, 袁迎曙. 干湿循环作用下氯离子在混凝土中的侵蚀过程分析[J]. 工业建筑, 2006, 36(12): 16)
[4] Zhang Y, Yao C J, Jin W L. Chloride ion distribution in concrete of dry-wet cycling region along elevated altitude[J]. J. Zhejiang Univ.(Eng. Sci.), 2009, 43(2): 360
(张奕, 姚昌建, 金伟良. 干湿交替区域混凝土中氯离子分布随高程的变化规律[J]. 浙江大学学报 (工学版), 2009, 43(2): 360)
[5] Zhao Y X, Gao X J, Xu C, et al. Concrete surface chloride ion concentration varying with seasons in marine environment[J]. J. Zhejiang Univ.(Eng. Sci.), 2009, 43(11): 2120
(赵羽习, 高祥杰, 许晨等. 海港码头混凝土表面氯离子质量分数随季节变化规律[J]. 浙江大学学报 (工学版), 2009, 43(11): 2120)
[6] Song X B, Kong Q M, Liu X L, et al. Experimental study on chloride threshold levels in OPC[J]. China Civil Eng. J., 2007, 40(11): 59
(宋晓冰, 孔启明, 刘西拉等. 普通硅酸盐水泥混凝土中临界氯离子浓度的试验研究[J]. 土木工程学报, 2007, 40(11): 59)
[7] Bazant Z P, Najjar L J. Nonlinear water diffusion in nonsaturated concrete[J]. Mater. Struct., 1972, 5(1): 3
[8] SL191-2008, Design code for hydraulic concrete structures[S]
(SL191-2008, 水工混凝土结构设计规范[S])
[9] Saetta A V, Schrefler B A, Vitaliani R V. The carbonation of concrete and the mechanism of moisture, heat and carbon dioxide flow through porous materials[J]. Cem. Concr. Res., 1993, 23(4): 761
[10] Brunauer S, Skalny J, Bodor E E. Adsorption on nonporous solids[J]. J. Colloid Interface Sci., 1969, 30(4): 546
[11] Xi Y, Bazant Z P, Jennings H M. Moisture diffusion in cementitious materials adsorption isotherms[J]. Adv. Cem. Based Mater., 1994, 1(6): 248
[12] Bear J, Bachmat Y. Introduction to Modeling of Transport Phenomena in Porous Media [M]. Dordrecth: Kluwer Academic Publishers, 1991
[13] Martin-Perez B, Pantazopoulou S J, Thomas M D A. Numerical solution of mass transport equations in concrete structures[J]. Comput. Struct., 2001, 79(13): 1251
[14] Bastidas-Arteaga E, Chateauneuf A, Sánchez-Silva M, et al. A comprehensive probabilistic model of chloride ingress in unsaturated concrete[J]. Eng. Struct., 2011, 33(3): 720
[15] Meng F C, Yang X B, Wang Q, et al. Design of northern waters of China's first super large cross sea bridge of Qingdao bay bridge [A]. Bridge the Eighteen National Conference Proceed [C]. Tianjin, 2008: 77
(孟凡超, 杨晓滨, 王麒等. 我国北方海域第一座超大型跨海大桥-青岛海湾大桥设计 [A]. 第十八届全国桥梁学术会议论文集 [C]. 天津, 2008: 77)
[16] JTJ275-2000, Corrosion prevention technical specifications for concrete structures of marine harbor engineering[S]
(JTJ275-2000, 海港工程混凝土结构防腐蚀技术规范[S])
[17] BE95-1347/R15-2000, General guidelines for durability design redesign[S]
[18] Yao C J. Penetration laws of chloride ions in concrete infrastructures at coastal ports [D]. Hangzhou: Zhejiang University, 2007
(姚昌建. 沿海码头混凝土设施受氯离子侵蚀的规律研究 [D]. 杭州: 浙江大学, 2007)
[19] Vu K A T, Stewart M G. Structural reliability of concrete bridges including improved chloride-induced corrosion models[J]. Struct. Safety, 2000, 22(4): 313
[20] Alonso C, Castellote M, Andrade C. Chloride threshold dependence of pitting potential of reinforcements[J]. Electrochim. Acta, 2002, 47(21): 3469
[1] DING Qingmiao, QIN Yongxiang, CUI Yanyu. Galvanic Corrosion of Aircraft Components in Atmospheric Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[2] Fahe CAO, Xiaoyan LIU, Zejie ZHU, Zhenni YE, Pan LIU, Jianqing ZHANG. Mumeric Simulation and Gap Control of Scanning Electrochemical Microscopy and Its Application[J]. 中国腐蚀与防护学报, 2017, 37(5): 395-401.
No Suggested Reading articles found!