Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (1): 61-68    DOI: 10.11902/1005.4537.2013.255
Current Issue | Archive | Adv Search |
Influence of Cyclic Action of Corrosion and Alternate Load on Fatigue Life of 2A12-T4 Aluminum Alloy
CAI Jian1, LIU Daoxin1(), YE Zuoyan1, ZHANG Xiaohua1, HE Yuting2, CUI Tengfei1
1. School of Aeronautics, Northwestern Polytechnic University, Xi'an 710072, China
2. School of Aeronautics and Astronautics Engineering, Air Force Engineering University, Xi'an 710038, China
Download:  HTML  PDF(5961KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Tests of alternate corrosion and fatigue for 2A12-T4 aluminum alloy were performed in order to reveal the influence of factors related with corrosion environment and load on its fatigue life. The effect of the alternate frequency of corrosion/fatigue and the type of corrosion tests such as alternate immersion, salt spray and salt spray+hot and humidity corrosion on the degradation of 2A12-T4 aluminum alloy was analyzed. The results show that for a designated total time of corrosion, the alternate frequency of corrosion/fatigue has important influence on the fatigue life of the alloy. The fatigue life of the alloy increases gradually with the increasing alternate frequency. The total fatigue life of aluminum alloy for 2, 4 and 6 cycles were 16.9%, 30.7% and 50.3% respectively higher than that for the first cycle. Besides, the type of corrosion tests also has important influence on the fatigue life of the alloy, of which the impact intensity may be ranked in a descending order as follows: salt spray corrosion>alternate immersion corrosion>salt spray+hot and humidity corrosion.

Key words:  2A12-T4 aluminum alloy      corrosion      fatigue      the alternate action of environment medium and stress      corrosion type     
ZTFLH:  TG172.9  

Cite this article: 

CAI Jian, LIU Daoxin, YE Zuoyan, ZHANG Xiaohua, HE Yuting, CUI Tengfei. Influence of Cyclic Action of Corrosion and Alternate Load on Fatigue Life of 2A12-T4 Aluminum Alloy. Journal of Chinese Society for Corrosion and protection, 2015, 35(1): 61-68.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.255     OR     https://www.jcscp.org/EN/Y2015/V35/I1/61

Fig.1  Specimen dimension (unit: mm)
Fig.2  Alternate test scheme of corrosion and fatigue
Fig.3  Influence of corrosion/fatigue alternate frequency on fatigue life of aluminum alloy
Fig.4  Fracture morphologies of specimens after corrosion/fatigue alternating tests for 6 cycles (a), 4 cycles (b), 2 cycles (c) and 1 cycle (d)
Fig.5  SEM morphologies of maximum corrosion area on fracture surface of specimens after corrosion/fatigue alternating tests for 6 cycles (a), 4 cycles (b), 2 cycles (c) and 1 cycle (d)
Fig.6  Influence of corrosion methods on fatigue life of aluminum alloy
Fig.7  Fracture morphologies of specimens after alternating tests of salt spray corrosion (a) and salt spray-hygrothermal corrosion (b) with fatigue
Fig.8  Corrosion morphologies of fracture surface of specimens after alternating tests of salt spray corrosion (a) and salt spray-hygrothermal corrosion (b) with fatigue corrosion methods
Fig.9  Surface corrosion morphologies of specimens after alternate immersion corrosion (a), salt spray corrosion (b) and salt spray-hygrothermal corrosion (c)
Fig.10  3D microscopic morphologies of the maximum corrosion pits on the surfaces of specimens after alternate immersion corrosion (a), salt spray corrosion (b) and salt spray-hygrothermal corrosion (c)
[1] Liu W T,Li Y H,et al. Evaluation Technique for Calendar Life System of Aircraft Structure[M]. Beijing: Aviation Industry Press, 2004
(刘文廷,李玉海等. 飞机结构日历寿命体系评定技术[M]. 北京: 航空工业出版社, 2004)
[2] Chen Y L, Bian G X, Yi L, et al. Research on fatigue characteristic and fracture mechanics of aluminum alloy under alternate action of corrosion and fatigue[J]. J. Mech. Eng., 2012, 20: 66
(陈跃良, 卞贵学, 衣林等. 腐蚀与疲劳交替作用下飞机铝合金疲劳性能及断裂机理研究[J]. 机械工程学报, 2012, 20: 66)
[3] Jiang Z G,Tian D S,Zhou Z T. Load/environment Spectrum of Aircraft Structure[M]. Beijing: Electronic Industry Press, 2012
(蒋祖国,田丁栓,周占廷. 飞机结构载荷/环境谱[M]. 北京: 电子工业出版社, 2012)
[4] Liu W T, Li Y H, Chen Q Z, et al. Accelerated corrosion environmental spectrums for testing surface coatings of critical areas of flight aircraft structures[J]. J. Beijing Univ. Aeronaut. Astronaut., 2002, 28(1): 109
(刘文珽, 李玉海, 陈群志等. 飞机结构腐蚀部位涂层加速实验环境谱研究[J]. 北京航空航天大学学报, 2002, 28(1): 109)
[5] Jones K, Shinde S R, Clark P N, et al. Effect of prior corrosion on short crack behavior in 2A12-T3 aluminum[J]. Corros. Sci., 2008, 50: 2588
[6] Alexopoulos N D, Dalakouras C J, Skarvelis P, et al. Accelerated corrosion exposure in ultra thin sheets of 2024 aircraft aluminium alloy for GLARE applications[J]. Corros. Sci., 2012, 55: 289
[7] Miller R N, Schuessler R L. Predicting service life of aircraft coating in various environments[J]. Corrosion, 1989, 45(4): 17
[8] Medved J J, Breton A M, Irving P E. Corrosion pit size distributions and fatigue lives: A study of the EIFS technique for fatigue design in the presence of corrosion[J]. Int. J. Fatigue, 2004, 26: 71
[9] Gruenberg K M, Craig B A, Hillberry B M, et al. Predicting fatigue life of pre-corrode 2024-T3 aluminum alloy[J]. Int. J. Fatigue, 2004, 26: 629
[10] Lin C, Wang F P, Li X G. The progress of research methods on atmospheric corrosion[J]. J. Chin. Soc. Corros. Prot., 2004, 24(4): 249
(林翠, 王凤平, 李晓刚. 大气腐蚀研究方法进展[J]. 中国腐蚀与防护学报, 2004, 24(4): 249)
[11] Montoya P, Diaz I, Granizo N, et al. An study on accelerated corrosion testing of weathering steel[J]. Mater. Chem. Phys., 2013, 142(1): 220
[12] Papadopoulos M P, Apostolopoulos C A, Zervaki A D, et al. Corrosion of exposed rebars associated mechanical degradation and correlation with accelerated corrosion tests[J]. Constr. Build. Mater., 2011, 25(8): 3367
[13] Liu Y H, Ren S Y. Study on equivalent accelerated corrosion test environment spectrum of typical marine atmosphere[J]. Equip. Environ. Eng., 2011, 8(1): 48
(刘元海, 任三元. 典型海洋大气环境当量加速实验环境谱研究[J]. 装备环境工程, 2011, 8(1): 48)
[14] Liu D X. Corrosion and Protection of Materials[M]. Xi'an: Northwestern Polytechnical University Press, 2006
(刘道新. 材料的腐蚀与防护[M]. 西安: 西北工业大学出版社, 2006)
[1] LI Chengyuan, CHEN Xu, HE Chuan, LI Hongjin, PAN Xin. Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[2] MING Nanxi, WANG Qishan, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Temperature on Corrosion Behavior of X70 Steel in an Artificial CO2-containing Formation Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[3] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[4] QIAO Jisen, XIA Zonghui, LIU Libo, XU Jiamin, LIU Xudong. Corrosion Resistance of Aluminum-magnesium Bimetal Composite Material Prepared by Isothermal Indirect Extrusion[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[5] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[6] GE Pengli, ZENG Wenguang, XIAO Wenwen, GAO Duolong, ZHANG Jiangjiang, LI Fang. Effect of Applied Stress and Medium Flow on Corrosion Behavior of Carbon Steel in H2S/CO2 Coexisting Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[7] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[8] ZHANG Yifan, YUAN Xiaoguang, HUANG Hongjun, ZUO Xiaojiao, CHENG Yulin. Corrosion Behavior of Cu-Al Laminated Board in Neutral Salt Fog Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[9] JIANG Bochen, CAO Jiangdong, CAO Xueyu, WANG Jiantao, ZHANG Shaopeng. Hot Corrosion Behavior of Gd2(Zr1-xCex)2O7 Thermal Barrier Coating Ceramics Exposed to Artificial Particulates of CMAS[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[10] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[11] LUAN Hao, MENG Fandi, LIU Li, CUI Yu, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Preparation and Anticorrosion Performance of M-phenylenediamine-graphene Oxide/Organic Coating[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[12] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[13] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[14] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[15] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
No Suggested Reading articles found!