Please wait a minute...
J Chin Soc Corr Pro  2012, Vol. 32 Issue (1): 70-74    DOI:
Current Issue | Archive | Adv Search |
INITIAL CORROSION BEHAVIOR OF COPPER AND BRASS IN TROPICAL MARITIME ATMOSPHERIC ENVIRONMENT
WU Jun1,2, LI Xiaogang2, DONG Chaofang2, ZHANG Sanping1, ZHOU Jianlong2
1. Wuhan Research Institute of Materials Protection,Wuhan 430030
2. Corrosion and Protection Center,University of Science and Technology Beijing, Beijing 100083
Download:  PDF(2983KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The corrosion behavior and regularity of copper T2 and brass H62 exposed in tropical maritime atmospheric environment in Xisha Islands for 1 month, 3 mouths and 6 months were studied through field exposure test. The surface and cross-sections morphologies of corrosion products were observed using SEM, energy dispersive spectromet (EDS) and X-ray diffraction (XRD) analysis were used to obtain the detailed information of the corrosion products. Electrochemical impedance spectroscopy (EIS)measurements were made for copper T2 and brass H62 specimens. The results showed that obvious localized corrosion occurred for copper T2 and brass H62 specimens in maritime atmospheric environment in Xisha Islands. The existence of O and Cl- is the main reason for the initial corrosion. The relatively high relativity humidity, temperature, Cl- amount, long sunshine, and the existence of dust accelerated the corrosionm of copper T2 and brass H62 specimens. The main corrosion product for copper T2 is Cu2O and for brass H62 are Cu3Cl4(OH)2 and Zn5(OH)8Cl2•H2O.
Key words:  copper      brass      Xisha islands      atmospheric corrosion      EIS     
Received:  28 September 2010     
ZTFLH: 

TG172.3

 

Cite this article: 

WU Jun, LI Xiaogang, DONG Chaofang, ZHANG Sanping, ZHOU Jianlong. INITIAL CORROSION BEHAVIOR OF COPPER AND BRASS IN TROPICAL MARITIME ATMOSPHERIC ENVIRONMENT. J Chin Soc Corr Pro, 2012, 32(1): 70-74.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I1/70

[1] Wu G H, Liao G D, Su S Y. Typical marine environmental test base in China-Xisha test station[J]. Electron. Prod. Reliab.Environ. Test., 2005, B12(Suppl.): 25-27

    (吴国华, 廖国栋,苏少燕. 我国典型的海洋环境试验基地-西沙试验站[J].电子产品可靠性与环境试验, 2005, B12(增刊): 25-27)

[2] Yang M, Wang Z Y. Review of atmospheric corrosion of copper[J]. Equip. Environ. Eng., 2006, 3(4): 38-44

    (杨敏,王振尧. 铜的大气腐蚀研究[J]. 装备环境工程. 2006, 3(4): 38-44)

[3] Rosa V, Diana D, Blanca M R. Effect of atmospheric pollutants on the corrosion of high power electrical conductors-Part2.Pure copper[J]. Corros. Sci., 2007, 49(6): 2329-2350

[4] Sandberg J, Wallinder I O, Leygraf C. Corrosion-induced copper runoff from naturally and pre-patinated copper in a marine environment[J]. Corros. Sci., 2006, 48(12): 4316-4338

[5] Corvo F, Minotas J, Delgado J. Changes in atmospheric corrosion rate caused by chloride-ions depending on rain regime[J].Corros. Sci., 2005, 47(4): 883-892

[6] An B G, Zhang X Y, Han E H. Corrosion behavior of pure copper during initial exposure stage in atmosphere of Shenyang city[J]. Acta Metall. Sin., 2007, 43(1): 77-51

    (安百刚,张学元, 韩恩厚. 沈阳大气环境下纯铜的初期腐蚀行为[J]. 金属学报, 2007,43(1): 77-51)

[7] Liu Q, Wang Q J, Du Z Z. Corrosion research of copper in natural environmental[J]. New Technol. New Process, 2008, (8): 80-82

    (刘琼, 王庆娟, 杜忠泽. 铜在自然环境中的腐蚀研究[J].新技术新工艺, 2008, (8): 80-82)

[8] Jouen S, Jean M, Hannoyer B. Simultaneous copper run of and copper surface analysis in an outdoor area[J].Surf. Interface Anal., 2000, 30(10): 145-148

[9] Graedel T E, Nassauk K, Franey J P. Copper patinas formed in the atmosphere[J]. Corros. Sci., 1987, 27(7): 639-657

[10] Mendoza A R, Corvo F, Gomez A, et al. Influence of the corrosion products of copper on its atmospheric corrosion kinetics in tropical climate[J]. Corros. Sci., 2004, 46(5): 1189-1200

[11] Cao C N. Environmental Corrosion of Materials in China[M]. Beijing: Chemical Industry Press, 2005: 113

     (曹楚南. 中国材料的自然环境腐蚀[M]. 北京: 化学工业出版社, 2005: 113)

[12] Cao C N, Zhang J Q. Introduction to Electrochemical Impedance Spectroscopy[M]. Beijing: Science Press, 2002

     (曹楚南, 张鉴清. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2002)
[1] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[2] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[3] BAI Miaomiao, BAI Ziheng, JIANG Li, ZHANG Dongjiu, YAO Qiong, WEI Dan, DONG Chaofang, XIAO Kui. Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[4] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[5] WANG Shuai,LIU Xinkuan,LIU Ping,CHEN Xiaohong,LI Wei,MA Fengcang,HE Daihua,ZHANG Ke. Effect of Sn and Al on Corrosion Resistance of Ni-free White Copper Alloy[J]. 中国腐蚀与防护学报, 2020, 40(1): 45-50.
[6] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[7] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[8] DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[9] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[10] Bobo HUANG,Ping LIU,Xinkuan LIU,Pinxiu MEI,Xiaohong CHEN. Seawater Corrosion Behavior of New 70-1 Tin Brass Net in Waters off Dachen Island for Two Years[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[11] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[12] Zhihu WANG, Jumei ZHANG, Lijing BAI, Guojun ZHANG. Microstructure and Property of Composite Coatings on AZ91 Mg-alloy Prepared by Micro-arc Oxidation and Electroless Cu-layer[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[13] Na GUO, Yanhua LEI, Tao LIU, Xueting CHANG, Yansheng YIN. Electrochemical Deposition of Polypyrrole Coating on Copper from Aqueous Phytate Solution and Its Application in Corrosion Protection[J]. 中国腐蚀与防护学报, 2018, 38(2): 140-146.
[14] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[15] Xiaofei CUI, Xiaoming TAN, De WANG, Ang QIAN. Assessment of Aging Performance of Polyurethane Coating for 7B04 Al-alloy with an Accelerated Testing Spectrum[J]. 中国腐蚀与防护学报, 2018, 38(1): 74-80.
No Suggested Reading articles found!