Please wait a minute...
J Chin Soc Corr Pro  2011, Vol. 31 Issue (6): 478-482    DOI:
Research Articles Current Issue | Archive | Adv Search |
MOLECULAR DYNAMICS SIMULATION OF CORROSION INHIBITING MECHANISM OF IRON BY FIVE KINDS OF AMINO ACIDS
SHI Wenyan1,2, XIA Yuan1, LEI Wu2, XIA Mingzhu2, WANG Fengyun2, ZHANG Qiping3, ZHANG Yuehua3
1. Chemical and Biological Engineering College, Yancheng Institute of Technology, Yancheng Jiangsu 224051
2. Institute of Industrial Chemistry, Nanjing University of Science & Technology, Nanjing Jiangsu 210094
3. College of Chemistry and Chemical Engineering, Nantong University, Nantong Jiangsu 226007
Download:  PDF(840KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The interactions between five kinds of amino acid corrosion inhibitors, i.e. glycin、leucine、aspartic acid、arginine and methionine and (100), (110), (111) crystal surfaces of Fe have been simulated by molecular dynamics. The results show that the orders of binding energy for five kinds of amino acids with three Fe crystal surfaces are as follows: glycing(r) of all systems indicates that binding energies are mainly provided by coulomb interaction energy and Van der Waals energy. Coordination bonds are formed between the metal iron atoms and the nitrogen、oxygen and sulfur atoms in amino acids. The configurations of amino acids have been deformed during their combining with Fe crystal surfaces, but the deformation energies of amino acids are far less than respective nonbonding energies.  
Key words:  amino acid      iron      corrosion inhibition mechanism      molecular dynamics      pair correlation functions     
Received:  22 March 2011     
ZTFLH: 

TQ463

 
Corresponding Authors:  WANG Fengyun     E-mail:  wangfywater@yahoo.com.cn

Cite this article: 

SHI Wenyan, XIA Yuan, LEI Wu, XIA Mingzhu, WANG Fengyun, ZHANG Qiping, ZHANG Yuehua. MOLECULAR DYNAMICS SIMULATION OF CORROSION INHIBITING MECHANISM OF IRON BY FIVE KINDS OF AMINO ACIDS. J Chin Soc Corr Pro, 2011, 31(6): 478-482.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2011/V31/I6/478

[1] Wu W M, Lu M X, Cheng M Y, et al. Inhibition performance of amino acid for steel in sulfuric acid solution [J]. Corros.Prot., 2008, 29 (12): 727-741

    (吴伟明, 路民旭, 程明焱等.硫酸介质中氨基酸对钢的缓蚀性能 [J]. 腐蚀与防护, 2008, 29 (12):727-741)

[2] Ashassi-Sorkhabi H, Ghasemi Z, Seifzadeh D. The inhibition effect of some amino acids towards the corrosion of aluminum in 1 M HCl+1 M H2SO4 solution [J]. Appl. Surf. Sci., 2005,225(1/4): 408-418

[3] Zerfaoui M, Oudda H, Hammouti B, et al. Inhibition of corrosion of iron in citric acid media by amino acids[J]. Prog. Org.Coat., 2004, 51: 134-138

[4] Zhang S G, Chen Y, Wang F Y. Molecular dynamics simulation of interaction between cuprous oxide crystal and benzotriazole derivatives [J]. J. Chin. Soc. Corros. Prot., 2007, 27(6): 348-353

    (张曙光, 陈瑜, 王风云.苯并三氮唑及其衍生物与氧化亚铜晶体相互作用的MD模拟 [J].中国腐蚀与防护学报, 2007, 27(6): 348-353)

[5] Zhang S G, Chen Y, Wang F Y. Molecular dynamics simulation of the corrosion inhibition mechanism of copper by benzotriazole and its carboxylate derivatives [J]. Acta Chim. Sin., 2007, 65(20):2235-2242

    (张曙光, 陈瑜, 王风云.苯并三氮唑及其羧酸酯衍生物对铜缓蚀机理的分子动力学模拟研究 [J].化学学报, 2007, 65(20): 2235-2242)

[6] Tang Y M, Yang X Y, Yang W Z. A preliminary investigation of corrosion inhibition of mild steel in 0.5 M H2SO4 by 2-amino-5-(n-pyridyl)-1, 3, 4-thiadiazole: Polarization, EIS and molecular dynamics simulations [J]. Corros. Sci., 2010, 52:1801-1808

[7] Materials Studio 3.0, Discover/Accelrys Software Inc., San Diego, California, 2004.

[8] Sun H. Compass: An ab initio force field optimized for condensed phase application, overview with detail on alkane and benzene compounds [J]. J. Phys. Chem. 1998, 102B, 7338-7364

[9] Sun H,Ren P, Fried J R. The compass force field: parameterization and validation for phosphazenes [J]. Comput. Theor. Polym. Sci., 1998, 8(1/2), 229-246

[10] Berendsen H J C,Postma J P M,van Gunsteren W F. Molecular dynamics with coupling to an external bath [J]. J. Chem.Phys., 1984, 81, 3684-3690

[11] Allen M P, Tildesley D J. Computer Simulation of Liquids [M]. Oxford: Clarendon Press, 1987

[12] Lashgari M, Arshadi M R. DFT studies of pyridine corrosion inhibitors in electrical double layer: solvent, substrate and electric field effects [J]. Chem. Phys., 2004, 299: 131-137

[13] Oguzie E E. Corrosion inhibition of aluminium in acidic and alkaline media by Sansevieria trifasciata extract [J]. Corros.Sci., 2007, 49: 1527-1539

[14] Frenkel & Smit. Translated by Wang W H. Molecular simulation-From Algorithms to Applications[M]. Beijing: Chemical Industry Press, 2002

     (Frenkel & Smit. 汪文川译.分子模拟--从头算法到应用[M]. 北京: 化学工业出版社, 2002)
[1] LIU Yang, WU Jinyi, YAN Xiaoyu, CHAI Ke. Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[2] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] SUN Haijing, QIN Ming, LI Lin. Performance of Al-Zn-In-Mg-Ti Sacrificial Anode in Simulated Low Dissolved Oxygen Deep Water Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[4] ZHOU Yu, ZHANG Haibing, DU Min, MA Li. Effect of Cathodic Potentials on Hydrogen Embrittlement of 1000 MPa Grade High Strength Steel in Simulated Deep-sea Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[5] WANG Yu, WU Jiajia, ZHANG Dun. Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[6] LI Qing, ZHANG Deping, LI Xiaorong, WANG Wei, SUN Baozhuang, AI Chi. Comparison of Stress Corrosion Behavior of TP110TS and P110 Steel in a Simulated Annular Environment of CO2 Injection Well[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[7] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[8] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[9] CHEN Xu, LI Shuaibing, ZHENG Zhongshuo, XIAO Jibo, MING Nanxi, HE Chuan. Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivityat Daqing Area[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[10] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[11] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[12] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[13] XU Congmin,LUO Lihui,WANG Wenyuan,ZHAO Miaomiao,TIAN Yongqiang,SONG Pengdi. Enhancing Sterilization Effect of Bactericide by D-tyrosine to Iron Bacterial Biofilm on Carbon Steel Surface[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[14] ZHANG Tianyi,LIU Wei,FAN Yueming,LI Shimin,DONG Baojun,BANTHUKUL Wongpat,CHOWWANONTHAPUNYA Thee. Effect of Synergistic Action of Cu/Ni on Corrosion Resistance of Low Alloy Steel in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 511-518.
[15] ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
No Suggested Reading articles found!