Please wait a minute...
J Chin Soc Corr Pro  2011, Vol. 31 Issue (6): 436-440    DOI:
Research Articles Current Issue | Archive | Adv Search |
STRESS CORROSION CRACKING BEHAVIORS FOR DIFFERENT NI-BASED WELDING MATERIALS IN HIGH TEMPERATURE AND HIGH PRESSURE WATER
LI Xiaohui, WANG Jianqiu, HAN EnHou, KE Wei
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Download:  PDF(1200KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  U-bend immersion tests were used for studying the stress corrosion cracking behaviors for electroslag welding (ESW) Alloy 600, electroslag welding (ESW) Alloy 690 and submerged-arc welding (SAW) Alloy 690. Results showed that electroslag welding Alloy 600, electroslag welding Alloy 690 and submerged-arc welding Alloy 690 samples were immune to stress corrosion cracking in simulated primary water of pressurized water reactor (PWR) after being immersed for 1193 h, which contained 1.5×10-3 B, 2.3×10-6 Li, 2.5×10-6 H2 at 325 ℃, 15.8 MPa. However, stress corrosion cracks were observed in electroslag welding Alloy 600 after being immersed in 10 wt.% NaOH alkali solution for 720 h at 330℃, 11 MPa. The maximum crack length was 835 μm after 720 h immersion and further expanded to 1135 μm after 1440 h immersion with a typical intergranular stress corrosion cracking (IGSCC) characteristic. For electroslag welding Alloy 690, microcracks were initiated with the length of 0.3 μm to 1.15 μm and stress corrosion crack was not observed.
Key words:  electroslag welding alloy 600      electroslag welding alloy 690      submerged-arc welding alloy 690      stress corrosion cracking     
Received:  03 September 2010     
ZTFLH: 

TG172.8

 
Corresponding Authors:  WANG Jianqiu     E-mail:  wangjianqiu@imr.ac.cn

Cite this article: 

LI Xiaohui, WANG Jianqiu, HAN EnHou, KE Wei. STRESS CORROSION CRACKING BEHAVIORS FOR DIFFERENT NI-BASED WELDING MATERIALS IN HIGH TEMPERATURE AND HIGH PRESSURE WATER. J Chin Soc Corr Pro, 2011, 31(6): 436-440.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2011/V31/I6/436

[1] Coriou H, Grall L, Mahieu C, et al. Sensitivity to stress corrosion and intergranular attack of  high - nickel austenitic alloys[J]. Corrosion, 1966, 22: 280-290

[2] Ding X S. The manufacture of PWR steam generator [J].Nucl. Power Plant, 2003, 4: 11-18

    (丁训慎,压水堆核电站蒸汽发生器的制造[J]. 核电站, 2003, 4: 11-18)

[3] Hwang S S, Hur D H, Han J H, et al. PWSCC of thermally treated alloy 600 pulled from a Korean plant [J]. Nucl. Eng. Des.,2002, 217: 237-245

[4] Hwang S S, Kim H P, Lim Y S, et al. Transgranular SCC mechanism of thermally treated alloy 600 in alkaline water containing lead [J]. Corros. Sci., 2007, 49(10): 3797-3811

[5] Park I G, Lee C S, Hwang S S, et al. Caustic stress corrosion cracking of alloys 600 and 690 with NaOH concentrations [J]. Met. Mater. Int., 2005, 11(5): 401-409

[6] Yang W, Lu Z P, Huang D L, et al. Caustic stress corrosion cracking of nickel-rich, chromium-bearing alloys [J]. Corros. Sci.,2001, 43(5): 963-977

[7] Yi Y, Eom S, Kim H, et al. Nickel boride (NiB) as an inhibitor for an IGSCC of Alloy 600 and its applicability [J]. J.Nucl. Mater., 2005, 347: 151-160

[8] Peng Q, Shoji T, Yamauchi H, et al. Intergranular environmentally assisted cracking of alloy 182 weld metal in simulated normal water chemistry of boiling water reactor [J].Corros. Sci., 2007, 49: 2767-2780

[9] Bao G, Shinozaki K, Iguro S, et al. Stress corrosion cracking sealing in overlaying of Inconel 182 by laser surface melting [J]. J. Mater. Proc. Technol., 2006, 173: 330-336

[10] ASTM G 30-97 (Reapproved 2003), Standard Practice for Making and Using U-Bend Stress-Corrosion Test Specimens [S]

[11] Kim J D,Moon J H. C-ring stress corrosion test for Inconel 600 and Inconel 690 sleeve joint welded by Nd:YAG laser [J]. Corros. Sci., 2004, 46: 807-818
[1] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[4] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[5] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[6] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[7] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[8] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[9] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[10] Naiqiang ZHANG,Guoqiang YUE,Fabin LV,Qi CAO,Mengyuan LI,Hong XU. Crack Growth Rate of Stress Corrosion Cracking of Inconel 625 in High Temperature Steam[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[11] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[12] Yueling GUO,En-Hou HAN,Jianqiu WANG. Effect of Post-forging Heat Treatment on Stress Corrosion Cracking of Nuclear Grade 316LN Stainless Steel in Boiling MgCl2 Solution[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.
[13] Zhiming ZHANG,Qingjiao PENG,Jianqiu WANG,En-Hou HAN,Wei KE. Stress Corrosion Cracking Behavior of Forged 316L Stainless Steel Used for Nuclear Power Plants in Alkaline Solution at 330 ℃[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
[14] SHI Xianbo, WANG Wei, YAN Wei, SHAN Yiyin, YANG Ke. Effect of Martensite/Austenite (M/A) Constituent on H2S Resistance of High Strength Pipeline Steels[J]. 中国腐蚀与防护学报, 2015, 35(2): 129-136.
[15] WANG Feng,,WEI Chunyan,HUANG Tianjie,,CUI Zhongyu,LI Xiaogang. Effect of H2S Partial Pressure on Stress Corrosion Cracking Behavior of 13Cr Stainless Steel in Annulus Environment Around CO2 Injection Well[J]. 中国腐蚀与防护学报, 2014, 34(1): 46-52.
No Suggested Reading articles found!