Please wait a minute...
J Chin Soc Corr Pro  2011, Vol. 31 Issue (6): 414-418    DOI:
Research Articles Current Issue | Archive | Adv Search |
HIGH TEMPERATURE OXIDATION BEHAVIOR OF A NOVEL FINE-GRAINED Ni3Al COATING
LI Mingfei1,2,3, PENG Xiao2, WANG Fuhui1,2
1. College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001
2. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
3. PetroChina Pipeline R & D Center, Langfang 065001
Download:  PDF(2278KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Fine-grained γ'-Ni3Al coatings were developed by a two-step process: co-electrodeposition of Ni with Al particles and subsequent annealing in vacuum at 600℃ or 800℃. After oxidation at 1000℃ in air for 20 h, the scales formed on both coatings exhibited better adhesion than that on a coarse-grained Ni3Al alloy, because the fine-grained coating structure suppressed the formation of voids at the scale/metal interface. Moreover, the scale formed on the coating by annealing at 800℃ consisted of NiO, NiAl2O4 and Al2O3, while the scale on the coating by annealing at 600℃ consisted of NiAl2O4 and Al2O3. The reason for this result is related to that the latter coating had a finer-grained structure, which promoted rapid formation of a continuum layer of Al2O3.
Key words:  oxidation      microcrystalline      co-electrodeposition      annealing      pores     
Received:  13 September 2010     
ZTFLH: 

TG172

 
Corresponding Authors:  LI Mingfei     E-mail:  mfli@imr.ac.cn

Cite this article: 

LI Mingfei1,2,3, PENG Xiao2, WANG Fuhui1,2. HIGH TEMPERATURE OXIDATION BEHAVIOR OF A NOVEL FINE-GRAINED Ni3Al COATING. J Chin Soc Corr Pro, 2011, 31(6): 414-418.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2011/V31/I6/414

[1] Deevi S C, Sikka V K. Nickel and iron aluminides: An overview on properties, processing, and applications[J].Intermetallics, 1996, 4: 357-375

[2] Kuenzly J D, Douglass D L. Oxidation mechanism of Ni3Al containing yttrium[J]. Oxid. Met., 1974, 8: 139-178

[3] Taniguchi S, Shibata T, Tsuruoka H. Isothermal oxidation behavior of Ni3Al-0.1B base alloys containing Ti, Zr, or Hf additions[J]. Oxid. Met., 1986, 26: 1-17

[4] Choi S C, Cho H J, Kim Y J, et al. High-temperature oxidation behavior of pure Ni3Al[J]. Oxid.  Met., 1996, 46:51-72

[5] Wang F H. Oxidation resistance of sputtered Ni3(AlCr) nanocrystalline coating[J]. Oxid. Met., 1997, 47: 247-258

[6] Xu C, Peng X, Wang F. Cyclic oxidation of an ultrafine-grained and CeO2-dispersed delta-Ni2Al3 coating[J]. Corros. Sci., 2010, 52: 740-747

[7] Susan D F, Misiolek W Z, Marder A R. Reaction synthesis of Ni-Al-based particle composite coatings[J]. Metall. Mater. Trans.,2001, 32A: 379-390

[8] Liu H F, Chen W X. Reactive oxide-dispersed Ni3Al intermetallic coatings by sediment co-deposition[J]. Intermetallics,2005, 13: 805-817

[9] Yang X, Peng X, Wang F. Effect of annealing treatment on the oxidation of an electrodeposited alumina-forming Ni-Al nanocomposite[J]. Corros. Sci., 2008, 50: 3227-3232

[10] Yang X, Peng X, Wang F. Size effect of Al particles on the structure and oxidation of Ni/Ni3Al composites transformed from electrodeposited Ni-Al films[J]. Scr. Mater., 2007, 56: 509-512

[11] Peng X, Ping D H, Li T F, er al. Oxidation behavior of a Ni-La2O3 codeposited film on nickel[J]. J. Electrochem.Soc., 1998, 145: 389-398

[12] Raineri V, Saggio M, Rimini E. Voids in silicon by He implantation: From basic to applications[J]. J. Mater. Res., 2000,15: 1449-1477

[13] Zinkle S J, Seitzman L E, Wolfer W G. Stability of vacancy clusters in metals.1. energy calculations for pure metals[J]. Philos. Mag., 1987, 55: 111-124

[14] Hart E W. On the role of dislocations in bulk diffusion[J]. Acta Metall, 1957, 5: 597-608

[15] Janssen M M P. Diffusion in nickel-rich part of Ni-Al system at 1000 degrees to 1300 degrees C-Ni3Al layer growth, diffusion-coefficients, and interface concentrations[J]. Metall.Trans., 1973, 4: 1623-1650

[16] Pint B A. On the formation of interfacial and internal voids in alpha-Al2O3 scales[J]. Oxi. Met., 1997, 48:303-328\par
[1] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[2] LIU Xiao, WANG Hai, ZHU Zhongliang, LI Ruitao, CHEN Zhenyu, FANG Xudong, XU Fanghong, ZHANG Naiqiang. Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[3] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[4] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[5] FANG Xudong, LIU Xiao, XU Fanghong, LI Ruitao, ZHU Zhongliang, ZHANG Naiqiang. Oxidation Behavior in Supercritical Water of Domestic Austenitic Steel C-HRA-5 for Uultra-supercritical Power Stations[J]. 中国腐蚀与防护学报, 2020, 40(3): 266-272.
[6] ZHENG Yanxin, LIU Ying, SONG Qingsong, ZHENG Feng, JIA Yuchuan, HAN Peide. High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[7] XU Xunhu,HE Cuiqun,XIANG Junhuai,WANG Ling,ZHANG Honghua,ZHENG Xiaodong. High Temperature Oxidation Behavior of Co-20Re-25Cr-1Si Alloy in 0.1 MPa Pure Oxygen[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[8] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[9] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[10] AI Peng,LIU Lixiang,LI Xiaogang,JIANG Wentao. Influence of TiAlSiN Coatings on High Temperature Oxidation Resistance of γ-TiAl Based Alloys[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[11] Yunhai MA. Effect of Shot Peening on Oxidation Resistance of Super 304H Steel in Supercritical Steam[J]. 中国腐蚀与防护学报, 2019, 39(3): 245-252.
[12] Junjie XIA,Hongzhi NIU,Min LIU,Huazhen CAO,Guoqu ZHENG,Liankui WU. Enhancement of High Temperature Oxidation Resistance of Ti48Al5Nb Alloy via Anodic Anodization in NH4F Containing Ethylene Glycol[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[13] Dongbai XIE,Youyu ZHOU,Jintao LU,Wen WANG,Shenglong ZHU,Fuhui WANG. Effect of Al/Si Content on Corrosion of Ni-based Alloys in Supercritical Water[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
[14] Ling WANG,Junhuai XIANG,Honghua ZHANG,Songlin QIN. High Temperature Oxidation Behavior of Three Co-20Re-xCr Alloys in 3.04×10-5 Pa Oxygen at 1000 and 1100 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[15] Hao CHEN,Qing CHEN,Li XIN,Long SHI,Shenglong ZHU,Fuhui WANG. Preparation and High Temperature Corrosion Behavior of Aluminized Nanocrystalline Coating on DD98M Alloy[J]. 中国腐蚀与防护学报, 2019, 39(1): 59-67.
No Suggested Reading articles found!