Please wait a minute...
J Chin Soc Corr Pro  2011, Vol. 31 Issue (3): 173-178    DOI:
Review Current Issue | Archive | Adv Search |
INVESTIGATION PROGRESS OF ALTERNATING CURRENT CORROSION ON BURIED PIPELINES
DONG Liang, LU Minxu, DU Yanxia, JIANG Zitao
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Download:  PDF(426KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Alternating current (AC) corrosion on buried pipelines has drawn much attention. Current status of the researches is reviewed in this article. The understanding of AC corrosion is mentioned. Characteristics, mechanisms, and mitigations of AC corrosion and the evaluation methods for AC corrosion risk are concluded. Finally, the issues for further investigations are proposed.
Key words:  buried pipeline      AC corrosion      mechanism      AC corrosion risk      evaluation methods      mitigation     
Received:  26 October 2009     
ZTFLH: 

TG172.84

 
Corresponding Authors:  DU Yanxia     E-mail:  duyanxia@ustb.edu.cn

Cite this article: 

DONG Liang, LU Minxu, DU Yanxia, JIANG Zitao. INVESTIGATION PROGRESS OF ALTERNATING CURRENT CORROSION ON BURIED PIPELINES. J Chin Soc Corr Pro, 2011, 31(3): 173-178.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2011/V31/I3/173

[1] McCollum B, Ahlborn G H. The influence of frequency of alternating or infrequently reversed current on electrolytic corrosion [J]. J. Franklin Inst., 1916, 182(1): 108-110

[2] Hewes F. Four phenomena affecting cathodic protection and corrosion rates [J]. Mat. Prot., 1969, 8(9): 67-71

[3] Gummow R A, Wakelin R G, Segall S M. AC corrosion-a new challenge to pipeline integrity [A].Corrosion/1998 [C]. Houston, TX: NACE, 1998, paper No.98566

[4] Wakelin R G, Gummow R A, Segall S M. AC corrosion-case histories, test procedures, mitigation [A]. Corrosion/1998 [C].Houston, TX: NACE, 1998, paper No.98565

[5] Roger F. Testing and mitigation of AC corrosion on 8" line: a field study [A]. Corrosion/2004 [C]. Houston, TX:NACE, 2004, paper No.04210

[6] Hanson H R, Jack S. AC corrosion on a pipeline located in an HVAC utility corridor [A]. Corrosion/2004 [C].Houston, TX: NACE, 2004, paper No.04209

[7] Eden D A. AC interference and accelerated pipeline corrosion in utility corridors-an alternative perspective to the root causes [A]. Corrosion/2006 [C]. Houston, TX:NACE, 2006, paper No.06159

[8] Li Y, Dawalibi F P. Effects of current unbalance and transmission line configuration on the interference levels induced on nearby pipelines [A]. Corrosion/2004 [C].Houston, TX: NACE, 2004, paper No.04213

[9] Wakelin R G, Sheldon C.Investigation and mitigation of AC corrosion on a 300 mm diameter natural gas pipeline [A]. Corrosion/2004 [C]. Houston, TX: NACE, 2004,paper No.04205

[10] Kulman F E. Effects of alternating currents in causing corrosion [J]. Corrosion, 1961, 17(3): 34-35

[11] Bertocci U. AC induced corrosion: the effect of an alternating voltage on electrodes under charge transfer control [J]. Corrosion,1979, 35(5): 211-215

[12] Lalvani S B, Lin X A. A theoretical approach for predicting AC-induced corrosion [J]. Corros. Sci.,1994, 36(6): 1039-1046

[13] Lalvani S B, Lin X. A revised model for predicting corrosion of materials induced by alternating voltages [J]. Corros. Sci., 1996, 38(10): 1709-1719

[14] Bosch R W, Bogaerts W F. A theoretical study of AC-induced corrosion considering diffusion phenomena [J]. Corros. Sci., 1998, 40(2-3): 323-336

[15] Bolzoni F, Goidanich S, Lazzari L, et al. Laboratory testing on the influence of alternated current on steel corrosion [A]. Corrosion/2004 [C]. Houston, TX: NACE,2004, paper No.04208

[16] Goidanich S, Lazzari L, Ormellese M, et al. Influence of AC on corrosion kinetics for carbon steel, zinc and copper [A]. Corrosion/2005 [C]. Houston, TX: NACE, 2005, paper No.05189

[17] Jones D A. Effect of alternating current on corrosion of low alloy and carbon steels [J]. Corrosion, 1978, 34(12): 428-433

[18] Zhang R, Vairavanathan P R, Lalvani S B. Perturbation method analysis of AC-induced corrosion [J]. Corros. Sci., 2008,50(6): 1664-1671

[19] Song H S, Kim Y G, Lee S M, et al. Competition of AC and DC current in AC corrosion under cathodic protection [A].Corrosion/2002 [C]. Houston, TX: NACE, 2002, paper No.02117

[20] Cao C N. Principle of Corrosion Electrochemistry [M].Beijing: Chemical Industry Press, 2004: 114-116

        (曹楚南. 腐蚀电化学原理 [M]. 北京: 化学工业出版社, 2004: 114-116)

[21] Ibrahim I, Takenouti H,Tribollet B, et al. Harmonic analysis study of the AC corrosion of buried pipelines under cathodic protecion [A]. Corrosion/2007 [C].Houston, TX: NACE, 2007, paper No.07042

[22] Nielsen L V, Galsgaard F. Sensor technology for on-line monitoring of AC-induced corrosion along pipelines [A]. Corrosion/2005 [C]. Houston, TX: NACE, 2005, paper No.05375

[23] Nielsen L V, Nielsen K V.Differential ER-technology for measuring degree of accumulated corrosion as well as instant corrosion rate [A]. Corrosion/2003 [C].Houston, TX: NACE, 2003, paper No.03443

[24] Nielsen L V, Nielsen K V, Baumgarten B, et al. AC-induced corrosion in pipelines:detection, characterisation, and mitigation [A]. Corrosion/2004 [C].Houston, TX: NACE, 2004, paper No.04211

[25] Panossian Z, Filho S E A, de Almeida N L, et al. Effect of alternating current by high power lines voltage and electric transmission systems in pipelines corrosion [A]. Corrosion/2009 [C]. Houston, TX: NACE, 2009, paper No.09541

[26] NACE standard RP0177-2000, Mitigation of alternating current and lightning effects on metallic structures and corrosion control systems [S].

[27] GB standard 21447-2008, Specification external corrosion control for steel pipelines [S].

[28] DIN standard 15280-2006, Evaluation of a.c. corrosion likelihood of buried pipelines-Application to cathodically protected pipelines [S].

[29] Simon P D, Schmidt J T, Mumme B K. Dynamic nature of HVAC induced current density on collocated pipelines [A].Corrosion/2007 [C]. Houston, TX: NACE, 2007, paper No.07650

[30] Frazier M J, Barlo T J. Influence of AC from power lines on the cathodic protection of steel in groundwater solutions [A].Corrosion/1996 [C]. Houston, TX: NACE, 1996, paper No.96210

[31] Yunovich M, Thompson N G. AC corrosion: corrosion rate and mitigation requirements [A]. Corrosion/2004 [C]. Houston,  TX:NACE, 2004, paper No.04206

[32] Nielsen L V. Role of alkalization in AC induced corrosion of pipelines and concequences hereof in relation to CP requirements [A]. Corrosion/2005 [C]. Houston, TX:NACE, 2005, paper No.05188

[33] Ragault I. AC corrosion induced by V.H.V. electrical lines on polyethylene coated steel gas pipelines [A]. Corrosion/1998 [C]. Houston, TX: NACE,1998, paper No.98557

[34] Ormellese M, Lazzari L, Goidanich S, et al. CP criteria assessment in the presence of AC interference [A].Corrosion/2008 [C]. Houston, TX: NACE, 2008, paper No.08064

[35] Hosokawa Y, kajiyama F, Nakamura Y. New CP criteria for elimination of the risks of AC corrosion and overprotection on cathodically protected pipelines [A]. Corrosion/2002 [C]. Houston, TX: NACE, 2002,paper No.02111

[36] Hosokawa Y, Kajiyama F. New CP maintenance concept for buried steel pipelines-current density-based CP criteria, and on-line surveillance system for CP rectifiers [A].Corrosion/2004 [C]. Houston, TX: NACE, 2004, paper No.04047

[37] Hosokawa Y, Kajiyama F. Case studies on the assessment of AC and DC interference using steel coupons with respect to current density CP criteria [A]. Corrosion/2006 [C].Houston, TX: NACE, 2006, paper No.06161

[38] Chin D T, Fu T W. Corrosion by alternating current: a study of the anodic polarization of mild steel in Na2SO4 solution [J]. Corrosion, 1979, 35(11): 514-523

[39] Mankar D S,Rodriguez R E. Designing cathodic protection system under the influence of high voltage AC interference [A]. Corrosion/2006 [C].Houston, TX: NACE, 2006, paper No.06162

[40] Kirkpatrick E L.Electrical grounding case histories [A]. Corrosion/2003 [C].Houston, TX: NACE, 2003, paper No.03701

[41] Dabkowski J. A review of AC power line coupling unto buried pipelines [A].Corrosion/1998 [C]. Houston, TX: NACE, 1998, paper No.98561

[42] Dabkowski J. Methodologies for AC mitigation [A]. Corrosion/2003 [C].Houston, TX: NACE, 2003, paper No.03703

[43] Dabkowski J, Allen R F, Perry F A. Mitigation design, installation and post commissioning measurements for a pipeline collocated with AC transmission lines [A]. Corrosion/2001 [C]. Houston, TX: NACE, 2001, paper No.01601

[44] Dabkowski J, Kirkpatrick E L. Design considerations for mitigation of induced AC on pipelines [A]. Corrosion/2001 [C].Houston, TX: NACE, 2001, paper No.01597

[45] Southey R D, Dawalibi F P. Computer modeling of AC interference problems for the most cost-effective solutions [A]. Corrosion/1998 [C]. Houston, TX:NACE, 1998, paper No.98564

[46] Southey R D, Dawalibi F P, Li Y, et al. Increasing the cost-effectiveness of AC interference mitigation designs with integrated electromagnetic field modeling [A]. Corrosion/2005 [C]. Houston, TX: NACE, 2005, paper No.05623

[47] Southey R D, Ruan W, Dawalibi F P. AC mitigation requirements: A parametric analysis [A]. Corrosion/2001 [C]. Houston, TX: NACE, 2001, paper No.01604
[1] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[4] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[5] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[6] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[7] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[8] CAO Jingyi, WANG Zhiqiao, LI Liang, MENG Fandi, LIU Li, WANG Fuhui. Failure Mechanism of Organic Coating with Modified Graphene Under Simulated Deep-sea Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[9] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[10] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[11] WANG Yi,ZHANG Dun. Research Progress of Bismuth Based Visible Light Photocatalytic Antifouling Materials[J]. 中国腐蚀与防护学报, 2019, 39(5): 375-386.
[12] REN Jianping,SONG Renguo. Effect of Two-stage Ageing on Mechanical Properties and Sensitivity to Hydrogen Embrittlement of 7050 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[13] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[14] Xijing WANG, Boshi WANG, Chao YANG, Yan YANG, Bin SHEN. Hot Corrosion of Pure Nickel and Its Weld Joints in Molten Na2SO4-K2SO4 Salts[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[15] Yue LI, Jian WANG, Yong ZHANG, Jingang BAI, Yadi HU, Yongfeng QIAO, Caili ZHANG, Peide HAN. Analysis of Initial Oxidation Process of 2205 Duplex Stainless Steel in Closed Container at High Temperature[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
No Suggested Reading articles found!