Please wait a minute...
J Chin Soc Corr Pro  2011, Vol. 31 Issue (2): 91-96    DOI:
Research Articles Current Issue | Archive | Adv Search |
ELECTROCHEMICAL STUDY ON CORROSION OF RUSTED CARBON STEEL
ZOU Yan1, WANG Jia1,2, ZHENG Yingying1
1. College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100
2. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Download:  PDF(2345KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Mass loss measurement and various electrochemical methods, including polarization curves, linear polarization resistance measurement (LPR) and electrochemical impedance spectra technique (EIS) were employed to evaluate the corrosion of rusted carbon steel immersed in seawater for 48 weeks. Results indicated that the initial corrosion product formed on the carbon steel was thin and loose. With prolonged immersion, the rust layer could be divided into two layers: the outer layer was thin and loose, while the inner layer was thick and compact. The corrosion rates calculated by electrochemistry measurement, were consistent with the mass loss. The electrochemical methods could be used to accurately estimate corrosion rate at initial period of immersion. After long-term immersion, the electrochemical corrosion rate turned to increase and deviated from mass loss gradually.
Key words:  carbon steel      seawater      corrosion morphology      complex system      deviation     
Received:  05 March 2010     
ZTFLH: 

TG174.36

 
Corresponding Authors:  Jia WANG     E-mail:  jwang@ouc.edu.cn

Cite this article: 

ZOU Yan, WANG Jia, ZHENG Yingying. ELECTROCHEMICAL STUDY ON CORROSION OF RUSTED CARBON STEEL. J Chin Soc Corr Pro, 2011, 31(2): 91-96.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2011/V31/I2/91

[1] Refait P, Memet J B, Bon C, et al. Formation of the Fe(II)--Fe(III) hydroxysulphate green rust during marine corrosion of steel [J]. Corros.Sci., 2003, 45(4): 833-845

[2] Dunnwald J, Otto A. An investigation of phase transitions in rust layers using raman spectroscopy [J]. Corros. Sci., 1989,29(9): 1167-1176

[3] Garci K E, Morales A L, Barrero C A, et al. New contributions to the understanding of rust layer formation in steels exposed to a total immersion test [J]. Corros. Sci.,2006, 48(9): 2813-2842

[4] Xia L T, Huang G Q, Ding L P. Sea water corrosion properties of carbon steel and low alloy steel [J]. Res. Stud. Foundry Equip.,2002, 4: 14-17

     (夏兰廷, 黄桂桥, 丁路平. 碳钢及低合金钢的海水腐蚀性能 [J]. 铸造设备研究, 2002, 4: 14-17)

[5] Huang G Q. Corrosion behavior of carbon steels immersed in sea areas of China [J]. Corros. Sci. Prot. Technol,2001, 13 (2): 81-88

     (黄桂桥. 碳钢在我国不同海域的海水腐蚀行为 [J]. 腐蚀科学与防护技术, 2001, 13(2): 81-88)

[6] Sawant S S, Wagh A B. Corrosion behaviour of metals and alloys in the waters of the Arabian Sea [J]. Corros. Prev.Contr., 1990, 37(6): 154-157

{[7] Melchers R E. Effect of small compositional changes on marine immersion corrosion of low alloy steels [J]. Corros. Sci., 2004,46(7): 1669-1691

[8] Melchers R E, Jeffrey R. Early corrosion of mild steel in seawater [J]. Corros. Sci., 2005, 47(7): 1678-1693

[9] Melchers R E. Mathematical modelling of the diffusion controlled phase in marine immersion corrosion of mild steel [J]. Corros. Sci., 2003, 45(5): 923-940

[10] Melchers R E, Wells T. Models for the anaerobic phases of marine immersion corrosion [J]. Corros. Sci., 2006,48(7): 1791-1811

[11] Panda B, Balasubramaniam R, Dwivedi G. On the corrosion behaviour of novel high carbon rail steels in simulated cyclic wet-dry salt fog conditions [J]. Corros. Sci.,2008, 50(6): 1684-1692

[12] Bousselmi L, Fiaud C, Tribollets B, et al. The Characterisation of the coated layer at the interface carbon steel-natural salt water by impedance spectroscopy [J].Corros. Sci., 1997, 39(9): 1711-1724

[13] Yadav A P, Nishikata A, Tsuru T. Electrochemical impedance study on galvanized steel corrosion under cyclic wet--dry conditions--influence of time of wetness [J].Corros. Sci., 2004, 46(1): 169-181

[14] Bousselmi L, Fiaud C, Tribollets B, et al. Impedance spectroscopic study of a steel electrode in condition of scaling and corrosion: Interphase model [J]. Electrochim.Acta, 1999, 44(24): 4357-4363

[15] Ma Y T, Li Y, Wang F H. The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment [J]. Mater. Chem. Phys.,2008, 112(3): 844-852

[16] Song G L. Theoretical analysis of the measurementof polarisation resistance in reinforced concrete [J].Cem. Concr. Comp., 2000, 22(6): 407-415\par
[1] ZHAI Sixin, YANG Xingyun, YANG Jilan, GU Jianfeng. Corrosion Properties of Quenching-Partitioning-Tempering Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[2] WANG Yu, WU Jiajia, ZHANG Dun. Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[3] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[4] HU Zongwu, LIU Jianguo, XING Rui, YIN Fabo. Erosion-corrosion Behavior of 90o Horizontal Elbow in Single Phase Flow[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
[5] DING Guoqing,LI Xiangyang,ZHANG Bo,YANG Zhaohui,HUANG Guiqiao,YANG Haiyang,LIU Kaiji. Variation of Free Corrosion Potential of Several Metallic Materials in Natural Seawater[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.
[6] Shaokun YAN,Dajiang ZHENG,Jiang WEI,Guangling SONG,Lian ZHOU. Electrochemical Activation of Passivated Pure Titanium in Artificial Seawater[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[7] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[8] Ping XU,Shuo ZHANG,Shuai SI,Yajun ZHANG,Changzheng WANG. Corrosion Mechanism of Carbon Steel Induced by Protein and Polysaccharide-the Main Components of EPS[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[9] Dan YANG,Dinglin LI,Yanliang HUANG,Pilong HUA,Xia ZHAO,Peng PENG,Xiutong WANG. Research Progress on Corrosion Issue and Metallic Material Selection Related with Seawater Pumped Storage Power Plant[J]. 中国腐蚀与防护学报, 2019, 39(1): 1-8.
[10] Xiankang ZHONG,Junying HU. Corrosion Behavior of X65 Carbon Steel in CO2Containing Liquids with Constant pH and Ferrous Ion Concentration[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[11] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[12] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[13] Yue QIAO, Zhiping ZHU, Lei YANG, Zhifeng LIU. Monitoring and Simulated Experiments of Oxidation-Reduction Potential of Boiler Feedwater at High Temperatures[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[14] Yan SUN, Jiajia WU, Dun ZHANG, Shiqiang CHEN. Investigation of Microorganisms in Corrosion Product Scales on Q235 Carbon Steel Exposed to Tidal- and Full Immersion Zone at Qindao- and Sanya-sea Waters[J]. 中国腐蚀与防护学报, 2018, 38(4): 333-342.
[15] Zhenhua WANG, Yang BAI, Xiao MA, Shaohua XING. Numerical Simulation of Galvanic Corrosion for Couple of Ti-alloy with Cu-alloy in Seawaters[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
No Suggested Reading articles found!