Please wait a minute...
J Chin Soc Corr Pro  2004, Vol. 24 Issue (1): 1-5     DOI:
Research Report Current Issue | Archive | Adv Search |
Potential Distribution Over the Metal with Salt Particle Deposition in Atmosphere
Jia WANG
中科院青岛海洋研究所
Download:  PDF(285KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Potential distributions of atmospheric corrosion caused by salt particle deposition were investigated using scanning Kelvin probe technique. The results indicate that the changes in potential distribution depended on the type of the salts and the relative humidity of the environment. At lower relative humidity, the potential distribution over the metal with salt particl deposition remained uniform. When relative humidity is higher than RHoss(Relative Humidity over Saturated Solution),however, the potentials around the salt particle deposition shifted negatively, forming a lower potential valley , and then the potentials outside the valley gradually moved positively, leading to volcano type of the heterogeneous potential distribution. This phenomenon can be observed on zinc and steel with the salt particle deposition such as sodium sulfate, sodium chloride and potassium chloride. The nonuniform potential distribution caused by the deposition of salt particle built-up anode and cathode which forms corrosion battery on the metal surface. Then, the atmospheric corrosion was initiated and propagated.
Key words:  potential distribution      atmospheric corrosion      Kelvin probe      
Received:  20 February 2003     
ZTFLH:  TG172.6  
Corresponding Authors:  Jia WANG     E-mail:  jwang@ms.qdio.ac.cn

Cite this article: 

Jia WANG. Potential Distribution Over the Metal with Salt Particle Deposition in Atmosphere. J Chin Soc Corr Pro, 2004, 24(1): 1-5 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2004/V24/I1/1

[1]AskeyA ,LyonSB ,ThompsonGE ,etal.Theeffectoffly-ashparicu lateontheatmosphericcorrosionofzincandmild-steel[J].Corros.Sci.,1993,34:1055
[2]LloydGO .25yearsofresearchinatmosphericcorrosion[J].Br.Corros.J .,1990,25(1):31
[3]LobnigRE ,SiconolfiDJ ,Psota-KeltyL ,etal.Atmosphericcorrosionofzincinthepresenceofammoniumsulfateparticles[J].J .Elec trochem.Soc.,1996,143(5):1539
[4]SkerryBS ,JohnsomnJB ,WoodGC .Corrosioninsmoke,hydrocarbonandSO/sub2/pollutedatmospheres.Ⅲ.thegeneralbehaviourofzinc[J].Corros.Sci.,1988,28:721
[5]SanyalB ,BhadwarDV .Theeffectoforientationofspecimensonthecorrosionratesofsteelinoutdoorexposure[J].J .Sci.Industr.Res.,1962,21D :243
[6]SinghaniaGK ,LaiB ,SanyalB .Corrosionofmetalsbycoppersulphate[J].LabdevJ .Sci.Tech.,1973,11A :17
[7]SvenssonJE ,JohanssonLG .Alaboratorystudyoftheinitial-stagesoftheatmosphericcorrosionofzincinthepresenceofNaClinfluenceofSO2 andNO2[J].Corros.Sci.,1993,34:721
[8]LobnigRE ,FrankenthalRP ,SiconolfiDJ,SinclairJD .Theeffectofsubmicroammoniumsulfateparticlesonthecorrosionofcopper[J].J .Electrochem.Soc.,1993,140(7):1902
[9]StratmannM ,WolpersM ,StrechelH ,FeserR .Useofascanning-kelv inprobeintheinvestigationofelectrochemicalreactionsatthemetal/polymerinterface[J].Ber.Bunsebges.Phys.Chem.1991,95(11):365
[10]WolpersM ,StratmannM ,ViefhausH ,StrechelH .Thestructureandsta bilityofmetalsurfacesmodifiedbysilane-Langmuir-Blodgettfilm[J].ThinSolidFilms,1992,210/211:592
[11]HanLT ,MansfeldF .Scanningkelvinprobeanalysisofweldedstainlesssteel[J].Corros.Sci.,1997,39(1):199
[12]AraokaA ,NishikataA ,TsuruT .Kelvinprobemeasurementonpotentialdistributionofsteelsunderwet-dryconditionsinmarineatmosphere[A].ProceedingsoftheInternationalSymposiumofMarineCorrosionandControl[C].Qingdao,July29-Aug.1,2000,167
[13]WangJia,TsuruT .ElectrochemicalstudyonthecathodicreactionofmetalcorrosionunderthinwaterlayerusingKelvinprobereferenceelectrode[A].Proceedingsof13 thInternationalCorrosionCongress[C].Melbourne,Australia,November25-29,1996,415
[14]SchmutzP ,FrankelGS .CharacterizationofAA2024-T3byscanningKelvinprobeforcemicroscopy[J].J.Electrochem.Soc.,1998,145(7):2285
[15]TaharaAkira,KodamaToshiaki.PotentialdistributionmeasurementingalvaniccorrosionofZn/FecouplebymeansofKelvinprobe[J].Cor ros.Sci.,2000,42:655
[16]O’BrienFEM .Thecontrolofhumiditybysaturatedsaltsolution[J].J.ScientificInstrumentsandPhysicalinIndustry,1948,25(3):73-76
[1] BAI Miaomiao, BAI Ziheng, JIANG Li, ZHANG Dongjiu, YAO Qiong, WEI Dan, DONG Chaofang, XIAO Kui. Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[2] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[3] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[4] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[5] DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[6] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[7] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[8] Jun WANG, Chao FENG, Bicao PENG, Yi XIE, Minghua ZHANG, Tangqing WU. Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[9] Xinxin ZHANG,Zhiming GAO,Wenbin HU,Zhipeng WU,Lianheng HAN,Lihua LU,Yan XIU,Dahai XIA. Correlation Between Corrosion Behavior and Image Information of Q235 Steel Beneath Thin Electrolyte Film[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[10] Xin ZHANG,Nianwei DAI,Yan YANG,Junxi ZHANG. Effect of Direct Current Electric Field on Corrosion Mechanism of Zn Exposed to Simulated Industrial Environment[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.
[11] Xiaobo MENG,Wubin JIANG,Yongli LIAO,Ruihai LI,Zhijun ZHENG,Yan GAO. Investigation on Atmospheric Corrosion Behavior of Transmission Tower Materials in Simulated Industrial Environments[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
[12] Shuangqing SUN,Qifei ZHENG,Chunling LI,Xiumin WANG,Songqing HU. Effect of Corrosion Products on Long-term Atmospheric Corrosion of Pure Aluminum 8A06[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[13] Ziheng BAI,Yunhua HUANG,Xiaogang LI,Lang YANG,Chaofang DONG,Lidan YAN,Kui XIAO. Environmental Corrosion in Industrial-marine Atmosphere at Qingdao of 7050 Al-alloy Anodized in Boric- and Sulfuric-acid Electrolyte[J]. 中国腐蚀与防护学报, 2016, 36(6): 580-586.
[14] Dongliang LI,Guiqin FU,Miaoyong ZHU. Effect of Si on Corrosion Behavior of Model Bridge Steels by Alternative Wetting/drying Test in an Artificial Medium Simulated Hot and Humid Atmosphere of Marine and Industrial Area[J]. 中国腐蚀与防护学报, 2016, 36(5): 433-440.
[15] Chuan WANG,Gongwang CAO,Chen PAN,Zhenyao WANG,Miaoran LIU. Atmospheric Corrosion of Carbon Steel and Weathering Steel in Three Environments[J]. 中国腐蚀与防护学报, 2016, 36(1): 39-46.
No Suggested Reading articles found!