Please wait a minute...
J Chin Soc Corr Pro  2000, Vol. 20 Issue (3): 129-134     DOI:
Research Report Current Issue | Archive | Adv Search |
Potential Distribution Inside a Cathodically Protected Crevice
Zhengfeng Li;;
武汉大学化学与环境科学学院
Download:  PDF(199KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  potential distributions inside a cathodically protected crevice configurated by a top plate and segmented mild steel electrodes were measured in diluted NaCl solutions. The effects of the control potential, solution conductivity and crevice thickness on the potential distribution were studied. The results showed that the potential gradient inside the crevice decreased with elapse of polarization time. In general, the more negative the control potential was and the greater the solution conductivity and crevice thickness were,the more negative the potential inside the crevice was. However, when the control potential was over negative, the cathodic polarization of the steel electrodes in the depth of the crevice might be less than that under a moderate control potential because of hydrogen evolution.
Key words:  crevice corrosion      carbon steel      Cathodic protection      potential distribution      NaCl solution      
Received:  08 July 1999     
ZTFLH:  TG174.41  
Corresponding Authors:  Zhengfeng Li   

Cite this article: 

Zhengfeng Li. Potential Distribution Inside a Cathodically Protected Crevice. J Chin Soc Corr Pro, 2000, 20(3): 129-134 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2000/V20/I3/129

[1]MundenBA .InSituMethodforSimultaneouslyReinforcingandProtectingCorroded/LeakingPipelines[J].MaterialsPerformance ,1990 ,2 9(11) :30 34
[2 ]BeaversJA ,ThompsonNG .CorrosionBeneathDisbondedPipelineCoatings[J].MaterialsPerformance ,1997,36 (4 ) :13 19.
[3]ToncreAC .OnAchievingPolarizationBeneathUnbondedPipeCoatings[J].MaterialsPerformance ,1984 ,2 3(8) :2 2 2 7.
[4 ]GanF ,SunZW ,SabdeG .ChinDT ,CathodicProtectiontoMitigateExternalCorrosionofUndergroundSteelPipeBe neathDisbondedCoating[J].Corrosion ,1994 ,50 (10 ) :80 4 816 .
[5]SabdeG ,GanF ,ChinDT .CathodicProtectionofUndergroundPipelineAgainstCreviceCorrosion :AReview[J].Jour nalofTheChinIChE 1993,2 4 (6 ) :4 17 4 2 9.
[6 ]火时中 .电化学保护 [M].北京 :化学工业出版社 ,1988,p2 0 .
[7]李正奉 ,甘复兴 .高阻介质中阴极保护下缝隙中的电位和电流分布 [J].中国学术期刊文摘 (科技快报 ) ,1999,5(4 ) :52 6 .
[8]SchwenkW .CurrentDistributionDuringtheElectrochemicalCorrosionProtectionofPipes[J].CorrosSci,1983,2 3(8) :871 886
[1] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[2] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[3] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[4] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[5] ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[6] Guirong WANG,Yawei SHAO,Yanqiu WANG,Guozhe MENG,Bin LIU. Effect of Applied Cathodic Protection Potential on Cathodic Delamination of Damaged Epoxy Coating[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[7] Ping XU,Shuo ZHANG,Shuai SI,Yajun ZHANG,Changzheng WANG. Corrosion Mechanism of Carbon Steel Induced by Protein and Polysaccharide-the Main Components of EPS[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[8] Changgang WANG,Jie WEI,Xin WEI,Xin MU,Fang XUE,Junhua DONG,Wei KE,Guoping LI. Crevice Corrosion Behavior of Several Super Stainless Steels in a Simulated Corrosive Environment of Flue Gas Desulfurization Process[J]. 中国腐蚀与防护学报, 2019, 39(1): 43-50.
[9] Xiankang ZHONG,Junying HU. Corrosion Behavior of X65 Carbon Steel in CO2Containing Liquids with Constant pH and Ferrous Ion Concentration[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[10] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[11] Yue QIAO, Zhiping ZHU, Lei YANG, Zhifeng LIU. Monitoring and Simulated Experiments of Oxidation-Reduction Potential of Boiler Feedwater at High Temperatures[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[12] Ping QIU, Lianjie YANG, Yu SONG, Hongfei YANG. Influence of DMF Modified TiO2 Film on the Photogenerated Cathodic Protection Behavior[J]. 中国腐蚀与防护学报, 2018, 38(3): 289-295.
[13] Wanjun PENG, Jiheng DING, Hao CHEN, Haibin YU. Corrosion Inhibition of Bio-based Inhibitor Furfuryl Glycidyl Ether[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[14] Guofu OU, Lulu ZHAO, Kai WANG, Kuanxin WANG, Haozhe JIN. Dew-Point Corrosion Behavior of 10# Carbon Steel inHCl-H2O Environment[J]. 中国腐蚀与防护学报, 2018, 38(1): 33-38.
[15] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
No Suggested Reading articles found!