Please wait a minute...
J Chin Soc Corr Pro  1998, Vol. 18 Issue (4): 269-275    DOI:
Current Issue | Archive | Adv Search |
STUDY ON CORROSION MECHANISM OF IRON IN SULFURIC ACID SOLUTIONS CONTAINING HYDROGEN SULFIDE
YAN Li-jing DONG Jun-hua NIU Lin LIN Hai-chao WU Wei-tao(State Key Laboratory for Corrosion and Protection; Institute of Corrosion and Protection of Metals; Chinese Academy of Sciences; Shenyang 110015)
Download:  PDF(516KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The electrochemical corrosion behavior of iron in H2S-containing sulfuric acid solutions have been studied by potentiodynamic and impedance measurements, and the kinetic equations of cathodic and anodic reactions were obtained. Furthermore, the corrosion mechanisms were proposed according to the results of quantum chemistry calculation. The results indicated that H2S accelerated the dissolution of iron, moreover, the anodic reaction under low applied potential was fast and the corresponding kinetic parametes were:vH+=-0.83, vHS-=0.35, ba ≈40mV. It was also shown that the acceleration extent of H2S for cathodic reaction was smaller than that for anodic reaction and independent on [H2S], and the corresponding kinetic parameters were vH+=1.19, vH2s=0, bc ≈-116mV.
Key words:  Iron      Hydrogen sulfide      CNDO/2      Corrosion mechanism     
Received:  25 August 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

YAN Li-jing DONG Jun-hua NIU Lin LIN Hai-chao WU Wei-tao(State Key Laboratory for Corrosion and Protection; Institute of Corrosion and Protection of Metals; Chinese Academy of Sciences; Shenyang 110015). STUDY ON CORROSION MECHANISM OF IRON IN SULFURIC ACID SOLUTIONS CONTAINING HYDROGEN SULFIDE. J Chin Soc Corr Pro, 1998, 18(4): 269-275.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y1998/V18/I4/269

1 Iofa Z A, Batrakov V V. Electrochemica Acta, 1964, 9:1645
2 Iyer R N, Takeuchi I. Corrosion, 1990, 46:460
3 Greco E C, Wright W B. Corrosion, 1962, 18:119t
4 Meyer F H, Riggs O L. Corrosion, 1958, 14: 109t
5 Sardisco J B, Wright W B. Corrosion, 1963, 19: 354t
6 Sardisco J B, Pitts R E. Corrosion, 1965, 21:245
7 Rosenfeld I L. Ingibitori Korozii Himija, Moskva, 1997, 285
8 Panasenko V F. Candidatets Dissertation, Polytekh, Inst., Kiev, 1972
9 Kaesche H. Metallic Corrosion, Houston: NACE, 1985. p372
10 高扬,刘尚长,吴林友,于保强.化学学报,1990,48:754
11 王志中,李向东.半经验分子轨道理论与实践,北京:科学出版社,1981.p66
12 武汉大学等校合编.无机化学,北京:高等教育出版社,1983.p57
13 沈宏康.有机酸碱,北京:高等教育出版社,1983.p171
14 曹楚南.腐蚀电化学,北京:化学工业出版社,1987.p104
[1] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] LIU Yang, WU Jinyi, YAN Xiaoyu, CHAI Ke. Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[3] SUN Haijing, QIN Ming, LI Lin. Performance of Al-Zn-In-Mg-Ti Sacrificial Anode in Simulated Low Dissolved Oxygen Deep Water Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[4] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[5] ZHOU Yu, ZHANG Haibing, DU Min, MA Li. Effect of Cathodic Potentials on Hydrogen Embrittlement of 1000 MPa Grade High Strength Steel in Simulated Deep-sea Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[6] WANG Yu, WU Jiajia, ZHANG Dun. Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[7] LI Qing, ZHANG Deping, LI Xiaorong, WANG Wei, SUN Baozhuang, AI Chi. Comparison of Stress Corrosion Behavior of TP110TS and P110 Steel in a Simulated Annular Environment of CO2 Injection Well[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[8] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[9] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[10] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[11] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[12] CHEN Xu, LI Shuaibing, ZHENG Zhongshuo, XIAO Jibo, MING Nanxi, HE Chuan. Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivityat Daqing Area[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[13] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[14] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[15] XU Congmin,LUO Lihui,WANG Wenyuan,ZHAO Miaomiao,TIAN Yongqiang,SONG Pengdi. Enhancing Sterilization Effect of Bactericide by D-tyrosine to Iron Bacterial Biofilm on Carbon Steel Surface[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
No Suggested Reading articles found!