Please wait a minute...
J Chin Soc Corr Pro  1998, Vol. 18 Issue (4): 263-268    DOI:
Current Issue | Archive | Adv Search |
APPLICATION OF MATHEMATICAL STATISTICAL METHODS TO ELECTROCHEMICAL NOISE OF STRESS CORROSIONCRACKING
QIAO Li-jie GAO Ke-wei CHU Wu-yang (Department of Materials Physics; University of Science and Technology Beijing; Beijing 100083)
Download:  PDF(519KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Electrochemical noises generated during stress corrosion cracking (SCC) of 304 stainless steel and α-brass were studied. SCC noise pattern showed common characteristics, i.e., the quick drop and slow recovery of the potential. The quick drop corresponded to a crack initiation and/or discontinuous propagation where fresh metal surface was exposed. The slow recovery corresponded to repassivation process of the exposed bare metal. For random noises, the rates of potential rise and drop were similar. The frequency of the noise generated during SCC increased with the increase in the applied stress. SCC initiation could be monitored and determined according to the noise characteristic and distribution. Mathematical treatments of standard deviation and power spectrum density (PSD) made the determination easier and realistic. But the background shift of the potential must be eliminated before the process. Standard deviation was more convenient and effective than PSD in the practice application.
Key words:  Electrochemical noise      Stress corrosion cracking      Standard deviation      Power spectrum density     
Received:  25 August 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

QIAO Li-jie GAO Ke-wei CHU Wu-yang (Department of Materials Physics; University of Science and Technology Beijing; Beijing 100083). APPLICATION OF MATHEMATICAL STATISTICAL METHODS TO ELECTROCHEMICAL NOISE OF STRESS CORROSIONCRACKING. J Chin Soc Corr Pro, 1998, 18(4): 263-268.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y1998/V18/I4/263

1 Newman R C, Sieradzki K. Scripta Metall. 1983, 17:621
2 Loto C A, Cottis R A. Corrosion 1987, 43:499
3 Loto C A, Cottis R A. Corrosion 1989, 45:136
4 Cottis R A, Loto C A. Corrosion 1990, 46:12
5 Inoue H, Iwawaki H, Yamakawa K. Mater. Sci. Eng. 1995, A198:225
6 Yamakawa K, Inoue H. Corros. Sci. 1992, 31:503
7 乔利杰,高克玮,褚武扬.金属学报,待发表
8 Wells D B, Stewart J, Davudson R, Scott P M, Willams D E. Corros. Sci. 1992, 33:39
9 Stewart J, Wells D B, Scott P M, Willams D E. Corros. Sci. 1992, 33:73
10 Gonzalez-Rodriguez J G, Salinas V M, Ramirez-Montano J M. Corros. Rev. 1996, 14:309
11 Benzaid A, Gabrielli C, Huet F, Jerome M, Wenger F. Material Science Forum 1992, 111-112:167
[1] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[4] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[5] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[6] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[7] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[8] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[9] Pengliang AN, Ping LIANG, Jianmin REN, Yanhua SHI, Feng LIU, Siyao CHEN. Characteristics on Electrochemical Noise of Pitting Corrosion for High Nitrogen Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2018, 38(1): 26-32.
[10] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[11] Jiejing CHEN,Hong JU,Can SUN,Xia LI,Yunfei LIU. Application of Electrochemical Testing Technology for Corrosion Under-deposits[J]. 中国腐蚀与防护学报, 2017, 37(3): 207-215.
[12] Naiqiang ZHANG,Guoqiang YUE,Fabin LV,Qi CAO,Mengyuan LI,Hong XU. Crack Growth Rate of Stress Corrosion Cracking of Inconel 625 in High Temperature Steam[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[13] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[14] Yueling GUO,En-Hou HAN,Jianqiu WANG. Effect of Post-forging Heat Treatment on Stress Corrosion Cracking of Nuclear Grade 316LN Stainless Steel in Boiling MgCl2 Solution[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.
[15] Zhiming ZHANG,Qingjiao PENG,Jianqiu WANG,En-Hou HAN,Wei KE. Stress Corrosion Cracking Behavior of Forged 316L Stainless Steel Used for Nuclear Power Plants in Alkaline Solution at 330 ℃[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
No Suggested Reading articles found!