Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (2): 307-318    DOI: 10.11902/1005.4537.2024.157
Current Issue | Archive | Adv Search |
Research Progress on Delayed Hydrides Cracking Behavior of Heavy Water-Reactor Pressure Tube
PAN Chunting1,2, MING Hongliang1,2(), SHI Xiuqiang3, BAO Yichen3, WANG Jianqiu1,2,4, HAN En-Hou2,4
1.School of Materials of Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Shanghai Nuclear engineering Research and Design Institute Co., Ltd., Shanghai 200233, China
4.Institute of Corrosion Science and Technology, Guangzhou 510530, China
Cite this article: 

PAN Chunting, MING Hongliang, SHI Xiuqiang, BAO Yichen, WANG Jianqiu, HAN En-Hou. Research Progress on Delayed Hydrides Cracking Behavior of Heavy Water-Reactor Pressure Tube. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 307-318.

Download:  HTML  PDF(2070KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zr-2.5Nb alloy pressure tubes are important structural components in heavy-water reactor. During operation of a heavy-water reactor, a large amount of hydrogen isotopes is produced by the corrosion reaction between the pressure tubes and the heavy-water coolant. Some of the hydrogen isotopes can be absorbed into the pressure tube. When the concentration of hydrogen atoms exceeds the solid solubility of hydrogen in Zr-2.5Nb alloy, hydrides are precipitated. The precipitation of hydrides will lead to deterioration of mechanical properties of Zr-2.5Nb alloy, and then leads to the expansion of microcracks inside the pressure tubes. The phenomenon is called Delayed hydrides cracking (DHC) which is one of the most important potential risks during the service of pressure tubes. Therefore, it is of great significance to study the DHC behavior of pressure tube. In this paper, the research progress on the testing methods for DHC behavior, the relevant mechanisms and models as well as the influencing factors of DHC behavior are reviewed, and the shortcomings of current researches and the future development trends are pointed out.

Key words:  heavy-water reactor      pressure tubes      Zr-2.5Nb alloy      delayed hydrides cracking     
Received:  18 May 2024      32134.14.1005.4537.2024.157
TG174  
Fund: Youth Innovation Promotion Association CAS(2022187)
Corresponding Authors:  MING Hongliang, E-mail: hlming12s@imr.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.157     OR     https://www.jcscp.org/EN/Y2025/V45/I2/307

Fig.1  Schematic diagrams of sampling (a) and dimensions of CCT specimen (b) and CB specimen (c). B is thickness of pressure tube in Fig.1b and 1c, the unit is mm
Fig.2  Schematic diagrams of loading for CB specimen (a) and CCT specimen (b). F is the external load
Fig.3  Influence of KI on DHCR[19]. KIH is the threshold of stress intensity factor for DHC, KIC is the fracture toughness
Fig.4  Summary of TSSP and TSSD for Zirconium and its alloys[35]
Fig.5  Diagrams of the propagation of cracks during DHC[40]
Fig.6  Variations of hydrogen concentration with temperature during thermal cycling, obtained based on TSS curves[36]
Fig.7  Stress distribution at the crack tip (a) and hydrogen concentration distribution at the crack tip under steady state diffusion condition (b)[46]
1 Liao J P, Mao Y L, Jin D S, et al. Laboratory simulation of crud deposition on Zr-alloy fuel cladding in simulated pressurized water reactor primary coolant [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 197
廖家鹏, 毛玉龙, 金德升 等. 锆合金包壳在模拟压水堆一回路冷却剂中的表面污垢沉积行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 197
doi: 10.11902/1005.4537.2022.022
2 Ru X, Staehle R W. Historical experience providing bases for predicting corrosion and stress corrosion in emerging supercritical water nuclear technology: part 1—review [J]. Corrosion, 2013, 69: 211
3 Grade A M. Effects of irradiation and hydriding on the mechanical properties of zircaloy-4 at high fluence [A]. Zirconium in the Nuclear Industry: Eighth International Symposium [M]. Philadelphia: ASTM, 1989
4 Daunys M, Dundulis R, Grybenas A, et al. Hydrogen influence on mechanical and fracture mechanics characteristics of zirconium Zr-2.5Nb alloy at ambient and elevated temperatures [J]. Nucl. Eng. Des., 2008, 238: 2536
5 Moan G D, Coleman C E, Price E G, et al. Leak-before-break in the pressure tubes of CANDU reactors [J]. Int. J. Pressure Vessels Piping, 1990, 43: 1
6 Wang M J, Qiu S Z, Su G H, et al. Research on the leak-rate characteristics of leak-before-break (LBB) in pressurized water reactor (PWR) [J]. Appl. Therm. Eng., 2014, 62: 133
7 Puls M P. Delayed hydride cracking: theory and experiment [A]. The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components. Engineering Materials [M]. London: Springer, 2012: 333
8 Shi S Q, Puls M P. Criteria for fracture initiation at hydrides in zirconium alloys I. Sharp crack tip [J]. J. Nucl. Mater., 1994, 208: 232
9 Liu Y Z, Zhao W J, Peng Q, et al. Study on electrolytic hydrogen infiltration and determination of hydrogen content of Zr-Sn-Nb alloy [A]. China Materials Seminar [C]. Beijing, 2002: 4
刘彦章, 赵文金, 彭 倩 等. Zr-Sn-Nb合金电解渗氢及氢含量确定研究 [A]. 中国材料研讨会 [C]. 北京, 2002: 4
10 Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
11 Zhou X, Wu D K, Cheng X, et al. Research progress of detection techniques for permeated hydrogen [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1203
周 欣, 吴大康, 成 旭 等. 渗透氢检测方法研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1203
12 Mieza J I, Vigna G L, Domizzi G. Evaluation of variables affecting crack propagation by delayed hydride cracking in Zr-2.5Nb with different heat treatments [J]. J. Nucl. Mater., 2011, 411: 150
13 Pan C T, Zhao G N, Bao Y C, et al. Effect of temperature on the delayed hydride cracking rate of Zr-2.5Nb alloy pressure tubes [J]. J. Nucl. Mater., 2024, 588: 154778
14 Kim Y S, Cheong Y M. Anisotropic delayed hydride cracking velocity of CANDU Zr-2.5Nb pressure tubes [J]. J. Nucl. Mater., 2008, 373: 179
15 Sun C, Tan J, Ying S H, et al. Threshold stress intensity factor for delayed hydride cracking of a recrystallized N18 alloy plate along the rolling direction [J]. J. Nucl. Mater., 2010, 406: 212
16 Kim Y S, Park S S, Kwun S I. Threshold stress intensity factor, KIH for delayed hydride cracking of a Zr-2.5Nb tube with loading mode [J]. J. Alloy. Compd., 2008, 462: 367
17 Shmakov A A, Singh R N, Yan D, et al. A combined SIF and temperature model of delayed hydride cracking in zirconium materials [J]. Comput. Mater. Sci., 2007, 39: 237
18 Simpson L A, Puls M P. The effects of stress, temperature and hydrogen content on hydride-induced crack growth in Zr-2.5 pct Nb [J]. Metall. Trans., 1979, 10A: 1093
19 Coleman C E. Simulating the behavior of zirconium-alloy components in nuclear reactors [A]. MoanG D, RudlingP. Zirconium in the Nuclear Industry: Thirteenth International Symposium [M]. West Conshohocken: ASTM, 2002: 3
20 Lumley S C, Grimes R W, Murphy S T, et al. The thermodynamics of hydride precipitation: the importance of entropy, enthalpy and disorder [J]. Acta Mater., 2014, 79: 351
21 Ma Y, Lan Y N, Chen J W. A novel cross-sectional metallography method for determining hydrogen absorption concentration and hydrogen absorption amount of Zr-Sn-Nb alloy cladding caused by high temperature water corrosion [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 261
马 雁, 蓝宇宁, 陈嘉威. Zr-Sn-Nb包壳管腐蚀吸氢中氢浓度测算的截面金相法 [J]. 中国腐蚀与防护学报, 2024, 44: 261
22 Kim J S, Kim S D, Yoon J. Hydride formation on deformation twin in zirconium alloy [J]. J. Nucl. Mater., 2016, 482: 88
23 Une K, Nogita K, Ishimoto S, et al. Crystallography of zirconium hydrides in recrystallized Zircaloy-2 fuel cladding by electron backscatter diffraction [J]. J. Nucl. Sci. Technol., 2004, 41(7): 731
24 Nath B, Lorimer G W, Ridley N. Effect of hydrogen concentration and cooling rate on hydride precipitation in α-zirconium [J]. J. Nucl. Mater., 1975, 58(2): 153
25 Roy C, Jacques J G. {1017} Hydride habit planes in single crystal zirconium [J]. J. Nucl. Mater., 1969, 31: 233
26 Lin X H, Beyerlein I J, Han W Z. Annealing cracking in Zr and a Zr-alloy with low hydrogen concentration [J]. J. Mater. Sci. Technol., 2024, 182: 165
doi: 10.1016/j.jmst.2023.09.039
27 Maimaitiyili T, Steuwer A, Blomquist J, et al. In-situ hydrogen charging of zirconium powder to study isothermal percipitation of hydrides and determination of Zr-hydride crystal structure [A]. Proceedings of the 16th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. Asheville, 2013: 8
28 Zhao Z, Blat-Yrieix M, Morniroli J P, et al. Characterization of zirconium hydrides and phase field approach to a mesoscopic-scale modeling of their precipitation [J]. J. ASTM Int., 2008, 5: 1
29 Perovic V, Weatherly G C, Simpson C J. Hydride precipitation in α/β zirconium alloys [A]. AshbyM F, HirthJ P. Perspectives in Hydrogen in Metals [M]. Oxford, New York: Pergamon, 1986: 469
30 Northwood D O, Gilbert R W. Hydrides in zirconium-2.5wt.% niobium alloy pressure tubing [J]. J. Nucl. Mater., 1978, 78: 112
31 Lee K W, Hong S I. Zirconium hydrides and their effect on the circumferential mechanical properties of Zr-Sn-Fe-Nb tubes [J]. J. Alloy. Compd., 2002, 346: 302
32 Xu C R, Zhao W J, Deng Z G, et al. Review of research on stress reorientation of hydrides in zirconium alloy cladding tube [J]. Hot Working Technol., 2016, 45(12): 19
徐春容, 赵文金, 邓治国 等. 锆合金包壳管氢化物应力再取向研究概述 [J]. 热加工工艺, 2016, 45(12): 19
33 Parodi S A, Ponzoni L M E, De Las Heras M E, et al. Study of variables that affect hydrogen solubility in α + β Zr-alloys [J]. J. Nucl. Mater., 2016, 477: 305
34 Fang Q. Characterization of hydrides and delayed hydride cracking in zirconium alloys [D]. Ontario: Queen's University, 2016
35 Motta A T, Capolungo L, Chen L Q, et al. Hydrogen in zirconium alloys: a review [J]. J. Nucl. Mater., 2019, 518: 440
doi: 10.1016/j.jnucmat.2019.02.042
36 Kim Y S. Driving force for delayed hydride cracking of zirconium alloys [J]. Met. Mater. Int., 2005, 11: 29
37 Khatamian D. Solubility and partitioning of hydrogen in metastable Zr-based alloys used in the nuclear industry [J]. J. Alloy. Compd., 1999, 293-295: 893
38 Khatamian D. Effect of β-Zr decomposition on the solubility limits for H in Zr-2.5Nb [J]. J. Alloy. Compd., 2003, 356-357: 22
39 Pan Z L, Ritchie I G, Puls M P. The terminal solid solubility of hydrogen and deuterium in Zr-2.5Nb alloys [J]. J. Nucl. Mater., 1996, 228: 227
40 Chu W Y, Qiao L J, Li J X. Hydrogen Embrittlement and Stress Corrosion Cracking: the Base Component [M]. Beijing: Science Press, 2013: 174
褚武扬, 乔利杰, 李金许. 氢脆和应力腐蚀: 基础部分 [M]. 北京: 科学出版社, 2013: 174
41 Dutton R, Nuttall K, Puls M P, et al. Mechanisms of hydrogen induced delayed cracking in hydride forming materials [J]. Metall. Trans., 1977, 8A: 1553
42 Puls M P. Effects of crack tip stress states and hydride-matrix interaction stresses on delayed hydride cracking [J]. Metall. Trans., 1990, 21A: 2905
43 McRae G A, Coleman C E, Leitch B W. The first step for delayed hydride cracking in zirconium alloys [J]. J. Nucl. Mater., 2010, 396: 130
44 Puls M P. Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys [J]. J. Nucl. Mater., 2009, 393: 350
45 Thompson A W, Bernstein I M. Effect of hydrogen on behavior of materials [A]. Proceedings of Conference on effects of hydrogen on behavior of materials [C]. Moran, 1976: 717
46 Shi S Q, Shek G K, Puls M P. Hydrogen concentration limit and critical temperatures for delayed hydride cracking in zirconium alloys [J]. J. Nucl. Mater., 1995, 218: 189
47 De Las Heras M E, Parodi S A, Ponzoni L M E, et al. Effect of thermal cycles on delayed hydride cracking in Zr-2.5Nb alloy [J]. J. Nucl. Mater., 2018, 509: 600
48 MacEwen S R, Coleman C E, Ells C E, et al. Dilation of h.c.p. zirconium by interstitial deuterium [J]. Acta Metall., 1985, 33: 753
49 Eadie R L, Coleman C E. Effect of stress on hydride precipitation in zirconium-2.5% niobium and on delayed hydride cracking [J]. Scr. Metall., 1989, 23: 1865
50 Varias A G, Massih A R. Simulation of hydrogen embrittlement in zirconium alloys under stress and temperature gradients [J]. J. Nucl. Mater., 2000, 279: 273
51 Feng J L, Varias A G, Sui Y K. Finite element analysis for steady-state hydride-induced fracture in metals by composite model [J]. Int. J. Solids Struct., 2006, 43: 2174
52 Jernkvist L O, Massih A R. Multi-field modelling of hydride forming metals. Part I: model formulation and validation [J]. Comput. Mater. Sci., 2014, 85: 363
53 Jernkvist L O. Multi-field modelling of hydride forming metals part II: application to fracture [J]. Comput. Mater. Sci., 2014, 85: 383
54 Shmakov A A, Kalin B A, Ioltukhovskii A G. A theoretical study of the kinetics of hydride cracking in zirconium alloys [J]. Met. Sci. Heat Treat., 2003, 45: 315
55 Jovanović M T, Eadie R L, Ma Y, et al. The effect of annealing on hardness, microstructure and delayed hydride cracking in Zr-2.5Nb pressure tube material [J]. Mater. Charact., 2001, 47: 259
56 Shah P K, Dubey J S, Kumar A, et al. Delayed hydride crack growth study on irradiated Zr-2.5Nb pressure tube [J]. J. Nucl. Mater., 2015, 460: 1
57 Yan D, Eadie R L. An approach to explain the stage I/II behaviour of the delayed hydride cracking velocity vs. KI curve for Zr-2.5Nb [J]. Scr. Mater., 2000, 43: 89
58 Yan D, Eadie R L. The critical length of the hydride cluster in delayed hydride cracking of Zr-2.5wt%Nb [J]. J. Mater. Sci., 2000, 35: 5667
59 Rice J R, Rosengren G F. Plane strain deformation near a crack tip in a power-law hardening material [J]. J. Mech. Phys. Solids, 1968, 16: 1
60 Hutchinson J W. Singular behaviour at the end of a tensile crack in a hardening material [J]. J. Mech. Phys. Solids, 1968, 16: 13
61 Sagat S, Puls M P. Temperature limit for delayed hydride cracking in Zr-2.5Nb alloys [A]. Proceedings of the 17th International Conference on Structural Mechanics in Reactor Technology [C]. Prague, 2003: 17
62 Markelov V A, Kotov P V, Zheltkovskaya T N. Temperature dependence of the velocity of delayed hydride cracking in Zr-2.5%Nb alloy [J]. Inorg. Mater. Appl. Res., 2010, 1: 217
63 Kim Y S. Temperature dependency of delayed hydride cracking velocity in Zr-2.5Nb tubes [J]. Mater. Sci. Eng., 2007, 468-470: 281
64 Sunil S, Bind A K, Khandelwal H K, et al. Delayed hydride cracking behavior of Zr-2.5Nb alloy pressure tubes for phwr700 [J]. J. Nucl. Mater., 2015, 466: 208
65 Shi S Q, Puls M P. Fracture strength of hydride precipitates in Zr-2.5Nb alloys [J]. J. Nucl. Mater., 1999, 275: 312
66 Holston A M A, Stjärnsäter J. On the effect of temperature on the threshold stress intensity factor of delayed hydride cracking in light water reactor fuel cladding [J]. Nucl. Eng. Technol., 2017, 49: 663
67 Kim Y S, Ahn S B, Kim K S, et al. Temperature dependence of threshold stress intensity factor, KIH in Zr-2.5Nb alloy and its effect on temperature limit for delayed hydride cracking [J]. Key Eng. Mater., 2006, 326-328: 919
68 Sagat S, Coleman C E, Griffiths M, et al. The effect of fluence and irradiation temperature on delayed hydride cracking in Zr-2.5Nb [A]. Zirconium in the Nuclear Industry: Tenth International Symposium [M]. Philadelphia: ASTM, 1994: 35
69 Sun C, Tan J, Ying S H, et al. Study of the critical temperatures for delayed hydride cracking in N18 zirconium alloy [J]. Acta Metall. Sin., 2009, 45: 541
孙 超, 谭 军, 应诗浩 等. N18锆合金氢致裂纹延迟开裂临界温度研究 [J]. 金属学报, 2009, 45: 541
70 Sun C, Tan J, Ying S H, et al. Prediction of critical temperature for delayed hydride cracking in irradiated N18 zirconium alloy [J]. Acta Metall. Sin., 2010, 46: 805
doi: 10.3724/SP.J.1037.2009.00868
孙 超, 谭 军, 应诗浩 等. 辐照后N18锆合金氢致延迟开裂临界温度预测 [J]. 金属学报, 2010, 46: 805
71 Cheadle B A, Coleman C E, Ambler J F R. Prevention of delayed hydride cracking in zirconium alloys [A]. Zirconium in the Nuclear Industry [M]. Strasbourg: ASTM, 1987: 846
72 Choo K N, Kim Y S. Hydrogen uptake and corrosion behavior of Zr-2.5Nb pressure tubes in wolsong unit 1 [J]. J. Nucl. Mater., 2001, 297: 52
73 Bao Y C, Shi X Q, Zhao C L. Hydrogen corrosion-uptake analysis and modeling for heavy water reactor Zr-2.5Nb pressure tubes [J]. Corros. Prot., 2020, 41(11): 22
鲍一晨, 石秀强, 赵传礼. 重水堆Zr-2.5Nb压力管腐蚀吸氢分析与建模 [J]. 腐蚀与防护, 2020, 41(11): 22
74 Coleman C E, Ambler J F R. Solubility of hydrogen isotopes in stressed hydride-forming metals [J]. Scripta Metallurgica, 1983, 17: 77
75 Kim Y S, Kim S J, Im K S. Delayed hydride cracking in Zr-2.5Nb tube with the cooling rate and the notch tip shape [J]. J. Nucl. Mater., 2004, 335: 387
76 Kim Y S, Grybenas A. Effect of load ratio and hydrogen concentration on the crack growth rate in Zr-2.5Nb tubes [J]. Mater. Sci. Eng., 2009, 520: 147
[1] BAI Zhengqing, NONG Jing, WEI Shichen, XU Jian. Effect of Pre-charging Hydrogen on Corrosion Behavior of Ni-Cr Alloy in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2025, 45(2): 338-346.
[2] CHENG Kaiyuan, PENG Yang, HUANG Feng, CHENG Xianglong, XU Yunfeng, PENG Zhixian, LIU Jing. Adaptability of Typical Seamless Tube Steels to Hydrogen-blended Natural Gas Environments and Hydrogen- induced Damage Mechanism[J]. 中国腐蚀与防护学报, 2025, 45(2): 397-406.
[3] YANG Zhenyu, JI Chao, GUO Liya, XU Run, PENG Wei, ZHAO Hongshan, WEI Xicheng, DONG Han. Initial Corrosion Behavior of Several Pure Irons and Steels in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(2): 469-478.
[4] TANG Yixin, ZHANG Fei, CUI Zhongyu, CUI Hongzhi, LI Yizhou. Effect of Hydrogen on Crevice Corrosion Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(2): 431-437.
[5] JIANG Huifang, LIU Yanghao, LIU Ying, LI Yingchao, YU Haobo, ZHAO Bo, CHEN Xi. Mechanism of Microbial Corrosion of J55 Steel in Hydrogen-containing Environments in Underground Hydrogen Storage Facilities[J]. 中国腐蚀与防护学报, 2025, 45(2): 347-358.
[6] CHEN Kai, DU Yifan, XU Haoyun, LV Liang, DANG Guiming, WANG Yujin, ZHENG Shuqi. Hydrogen Permeation and Hydrogen Embrittlement Sensitivity of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[7] LI Xincheng, LI Zhaonan, WANG Haifeng, XU Yunze, WANG Mingyu, ZHEN Xingwei. Hydrogen Embrittlement Sensitivity for Welded Structural Parts of DH36 Marine Engineering Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 416-422.
[8] XU Jingxiang, HUANG Ruiyang, CHU Zhenhua, JIANG Quantong. Corrosion Behavior of High Entropy Alloy FeNiCoCrW0.2Al0.1 in Sulfate-reducing Bacteria Containing Solution[J]. 中国腐蚀与防护学报, 2025, 45(2): 460-468.
[9] JIN Zhenting, SONG Qining, LIU Qi, PENG Chunlan, XU Nan, LU Qiqing, BAO Yefeng, ZHAO Lijuan, ZHAO Jianhua. Long-term Corrosion Behavior of Three Cu-alloys in 3.5%NaCl Solutions with Different pH Values[J]. 中国腐蚀与防护学报, 2025, 45(2): 506-514.
[10] ZHANG Yongkang, ZHAI Haimin, LI Xuqiang, LI Wensheng. Hot Corrosion Behavior of Fe-based Amorphous Coatings in Mixed Salts of Na2SO4 + K2SO4 and Na2SO4 + NaCl[J]. 中国腐蚀与防护学报, 2025, 45(1): 92-102.
[11] CHEN Zheng, YUWEN Pei, WEN Sihan, LI Meifeng, SHA Jiangbo, ZHOU Chungen. First Principles Study on Effect of B Addition on Oxidation Resistance of MoSi2-based Compound[J]. 中国腐蚀与防护学报, 2025, 45(1): 224-230.
[12] WANG Yue, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Corrosion Resistance of CVD Aluminized Coating on K444 Alloy Beneath a Thin Deposits of 95%Na2SO4 + 5%NaCl at High Temperature[J]. 中国腐蚀与防护学报, 2025, 45(1): 127-136.
[13] WANG Kun, ZOU Lanxin, GUO Lei, YAN Kai, YE Fuxing, LIU Hongli, GUO Hongbo. High-temperature Corrosion and Protection of Thermal Barrier Coatings for Aeroengines and Gas Turbines[J]. 中国腐蚀与防护学报, 2025, 45(1): 1-19.
[14] GUO Jingbo, YANG Shouhua, ZHOU Ziyi, MU Rende, XIE Yun, SHU Xiaoyong, DAI Jianwei, PENG Xiao. High-temperature Oxidation Behavior of Laser Additively Manufactured AlCoCrFeNiSi High Entropy Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 217-223.
[15] HUANG Qinying, LI Yuzhuo, YANG Yingfei, REN Pan, WANG Qiwei. Hot Corrosion Behavior of Pt Modified AlCoCrFeNi2.1 Eutectic High Entropy Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 115-126.
No Suggested Reading articles found!