Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (3): 245-250    DOI: 10.11902/1005.4537.2015.038
Current Issue | Archive | Adv Search |
Corrosion Behavior of ZK60 Magnesium Alloy in Sodium Halide Solutions
Hongyan XU(),Jiangtao DIWU,Xia LIU,Yaqin YANG
School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
Download:  HTML  PDF(2508KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of ZK60 magnesium alloy in 3.5% sodium halides NaX (X =F, Cl, Br and I) solutions was studied by means of static immersion methods, potentiodynamic polarization measurement and SEM observation. The results showed that, the open circuit potential (OCP) of ZK60 alloy in 3.5% sodium halides solutions increased first and then became flat to a steady state. The corrosion behavior of ZK60 alloy was related to the halogen ions in the solutions: i.e. it was passivated in 3.5%NaF solution, while it was corroded in 3.5%NaCl, 3.5%NaBr and 3.5%NaI solutions and its corrosion rate decreased with immersion time, which may be ascribed to the formed protective corrosion products with the increasing pH value of the solutions.

Key words:  ZK60 magnesium alloy      corrosion      sodium halide solution     

Cite this article: 

Hongyan XU,Jiangtao DIWU,Xia LIU,Yaqin YANG. Corrosion Behavior of ZK60 Magnesium Alloy in Sodium Halide Solutions. Journal of Chinese Society for Corrosion and protection, 2015, 35(3): 245-250.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.038     OR     https://www.jcscp.org/EN/Y2015/V35/I3/245

Fig.1  Time dependences open circuit potential (OCP) of ZK60 alloy in 3.5%NaF solution (a) and 3.5%NaCl,3.5%NaBr and 3.5%NaI solutions (b)
Fig.2  XRD patterns of ZK60 alloy after immersed in 3.5%NaF solution for 10, 30, 60 and 120 min (a), and the magnified image of square area in Fig.2a (b)
Fig.3  Potentiodynamic polarization curves of ZK60 alloy after immersion for 10 and 60 min in 3.5%NaF (a), 3.5% NaCl (b), 3.5%NaBr (c) and 3.5%NaI (d) solutions
Solution Ecorr / mVSCE Icorr / mAcm-2
10 min 60 min 10 min 60 min
3.5%NaCl -1473 -1459 0.112 0.058
3.5%NaBr -1450 -1397 0.073 0.018
3.5%NaI -1414 -1352 0.058 0.017
3.5%NaF -417 -185 0.009 0.006
Table 1  Corrosion potential (Ecorr) and corrosion current density (Icorr) of ZK60 alloy immersed in different halide solutions for different time
Fig.4  pH values of 3.5% sodium halide solutions as a function of immersion time of ZK60 alloy
Fig.5  SEM images of ZK60 alloy after immersion in 3.5%NaF (a), 3.5%NaCl (b), 3.5%NaBr (c) and 3.5%NaI (d) solutions for 48 h
[1] Shi Z, Jia J X, Atrens A. Galvanostatic anodic polarisation curves and galvanic corrosion of high purity Mg in 3.5%NaCl saturated with Mg(OH)2[J]. Corros. Sci., 2012, 60: 296
[2] Cheng Y L, Qin T W, Wang H M, et al. Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium alloys[J]. Trans. Nonferrous Met. Soc. China, 2009, 19(3): 517
[3] Zhang Z M, Xu H Y, Li B C. Corrosion properties of plastically deformed AZ80 magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: s697
[4] Zhao M C, Liu M, Song G L, et al. Influence of pH and chloride ion concentration on corrosion of magnesium alloy ZE41[J]. Corros. Sci., 2008, 50: 3168
[5] Xu W J, Ma Y, Lv W L, et al. Effect factors of corrosion behaviors of magnesium alloys[J]. Corros. Prot., 2007, 28(4): 163
[6] Yang L J, Wei Y H, Hou L F, et al. Corrosion behaviour of die-cast AZ91D magnesium alloy in aqueous sulphate solutions[J]. Corros. Sci., 2010, 52(2): 345
[7] Bakhsheshi-Rad H R, Idris M H, Abdul-Kadir M R. Synthesis and in vitro degradation evaluation of the nano-HA/MgF2 and DCPD/MgF2 composite coating on biodegradable Mg-Ca-Zn alloy[J]. Surf. Coat. Technol., 2013, 222: 79
[8] Ambat R, Aung N N, Zhou W. Studies on the influence of chloride ion and pH on the corrosion and electrochemical behaviour of AZ91D magnesium alloy[J]. J. Appl. Electrochem., 2000, 30(7): 865
[9] Fekry A M, Tammam R H. Corrosion and impedance studies on magnesium alloy in oxalate solution[J]. Mater. Sci. Eng., 2011, B176: 792
[10] Heakal F E, Fekry A M, Fatayerji M. Influence of halides on the dissolution and passivation behavior of AZ91Dmagnesium alloy in aqueous solutions[J]. Electrochim. Acta, 2009, 54: 1545
[11] Pan F S, Mao J S, Chen X H, et al. Influence of impurities on microstructure and mechanical properties of ZK60 magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1299
[12] Wu Y Z,?Yan H G,?Zhu S Q,?et al. Microstructure and mechanical properties of?ZK60?magnesium alloy fabricated by high strain rate multiple forging[J]. Mater. Sci. Technol., 2013, 29(1): 54
[13] Zhang X, Zhang K, Li X G, et al. Corrosion and electrochemical behavior of as-cast Mg-5Y-7Gd-1Nd-0.5 Zr magnesium alloys in 5%NaCl aqueous solution[J]. Prog. Nat. Sci.: Mater. Int., 2011, 21(4): 314
[14] Gulbrandsen E, Taft? J, Olsen A. The passive behaviour of Mg in alkaline fluoride solutions. Electrochemical and electron microscopical investigations[J]. Corros. Sci., 1993, 34(9): 1423
[15] Li J Z, Huang J G, Tian Y W, et al. Corrosion action and passivation mechanism of magnesium alloy in fluoride solution[J]. Trans. Nonferrous Met . Soc. China, 2009, 19(1): 50
[16] Huo H W, Li Y, Wang H N, et al. Corrosion and protection of magnesium alloys[J]. Mater. Rev., 2001, 15(7): 25 (霍宏伟, 李瑛, 王赫男等. 镁合金的腐蚀与防护[J]. 材料导报, 2001, 15(7): 25)
[17] Hara N, Kobayashi Y, Kagaya D, et al. Formation and breakdown of surface films on magnesium and its alloys in aqueous solutions[J]. Corros. Sci., 2007, 49(1): 166
[18] Pardo A, Merino M C, Coy A E, et al. Corrosion behavior of magnesium/aluminum alloys in 3.5wt.% NaCl[J]. Corros. Sci., 2008, 50(3): 823
[19] Li Y, Zhang Z M, Xue Y. Influence of aging on microstructure and mechanical properties of AZ80 and ZK60 magnesium alloys[J]. Trans. Nonferrous Met. Soc. China, 2011, 21(4): 739
[20] Chen X H, Huang X W, Pan F S, et al. Effects of heat treatment on microstructure and mechanical properties of ZK60 Mg alloy[J]. Trans. Nonferrous Met. Soc. China, 2011, 21(4): 754
[21] Orlov D,Ralston K D,Birbilis N,et al. Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing [J]. Acta Mater.., 2011, 59(15): 6176
[1] LI Chengyuan, CHEN Xu, HE Chuan, LI Hongjin, PAN Xin. Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[2] MING Nanxi, WANG Qishan, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Temperature on Corrosion Behavior of X70 Steel in an Artificial CO2-containing Formation Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[3] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[4] QIAO Jisen, XIA Zonghui, LIU Libo, XU Jiamin, LIU Xudong. Corrosion Resistance of Aluminum-magnesium Bimetal Composite Material Prepared by Isothermal Indirect Extrusion[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[5] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[6] GE Pengli, ZENG Wenguang, XIAO Wenwen, GAO Duolong, ZHANG Jiangjiang, LI Fang. Effect of Applied Stress and Medium Flow on Corrosion Behavior of Carbon Steel in H2S/CO2 Coexisting Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[7] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[8] ZHANG Yifan, YUAN Xiaoguang, HUANG Hongjun, ZUO Xiaojiao, CHENG Yulin. Corrosion Behavior of Cu-Al Laminated Board in Neutral Salt Fog Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[9] JIANG Bochen, CAO Jiangdong, CAO Xueyu, WANG Jiantao, ZHANG Shaopeng. Hot Corrosion Behavior of Gd2(Zr1-xCex)2O7 Thermal Barrier Coating Ceramics Exposed to Artificial Particulates of CMAS[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[10] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[11] LUAN Hao, MENG Fandi, LIU Li, CUI Yu, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Preparation and Anticorrosion Performance of M-phenylenediamine-graphene Oxide/Organic Coating[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[12] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[13] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[14] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[15] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
No Suggested Reading articles found!