Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (3): 271-278    DOI: 10.11902/1005.4537.2014.178
Current Issue | Archive | Adv Search |
Atmospheric Corrosion of Carbon Steel and Galvanized Steel in a Test Site at Dujiangyan City
Xianguang ZENG1,3(),Xingwen ZHENG2,3,Min GONG1,3,Jinlong FAN1,Xuedan CHEN1,3
1. School of Materials Science and Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
2. School of Chemical and Pharmaceutical Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
3. Key Laboratory of Material Corrosion and Protection of Sichuan Province, Sichuan University of Science & Engineering, Zigong 643000, China
Download:  HTML  PDF(6115KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The atmospheric corrosion behavior of carbon steel and galvanized steel was investigated by exposure for one and three years respectively at four test spots with different local-environmental conditions in a test site at Dujiangyan city of Sichuan province, and then the corrosion morphology, corrosion rate and corrosion products of the two steels were carefully examined. The results showed that due to the significant differences in local temperature and relative humidity the corrosion rates of the two steels were different at the four test spots. In general, the corrosion rates of the two steels reduced with the increasing corrosion time. Zn coating could effectively protect the steel substrate, i.e. suppress the environmental corrosion in the test spots. The relative humidity, time of wetness and the fluctuation of relative humidity were important affecting factors on the corrosion of the steels.

Key words:  atmospheric corrosion      local environment      carbon steel      galvanized steel     

Cite this article: 

Xianguang ZENG,Xingwen ZHENG,Min GONG,Jinlong FAN,Xuedan CHEN. Atmospheric Corrosion of Carbon Steel and Galvanized Steel in a Test Site at Dujiangyan City. Journal of Chinese Society for Corrosion and protection, 2015, 35(3): 271-278.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.178     OR     https://www.jcscp.org/EN/Y2015/V35/I3/271

Material C Mn Si S P Al Fe Zn
Carbon steel 0.18 0.51 0.27 0.021 0.03 --- Bal. ---
Galvanized coating --- --- 0.062 0.006 0.01 0.68 2.672 Bal.
Table 1  Chemical compositions of carbon steel and galvanized coating
Fig.1  Monthly rainfall of Dujiangyan city in the experimental period
Fig.2  Curves of temperature and relative humidity vs time at monitoring points A (a), B (b), C (c) and D (d)
Statistical parameter Monitoring point
A B D
Test time / h 3912 8877 8877
Test month 2011.7~2011.9+2012.1~2012.4 2011.7~2012.7 2011.7~2012.7
RHmix / % 93.9 95.1 99.8
RHmin / % 34.2 75.2 28.8
RHavg / % 81.2 88.4 87.1
tRH>80 / % 63.2 98.5 81.2
Tmix / ℃ 33.8 26.1 31.7
Tmin / ℃ -2.6 0.1 -4.4
Tavg / ℃ 13.5 13.6 13.3
Table 2  Statistics of temperature and relative humidity at three monitoring points in the period of 2011.7~2012.7
Fig.3  Surface morphologies of the samples after corrosion for 1 a (a) and 3 a (b)
Fig.4  Metallurgical micrographs of the samples test for 3 a
Fig.5  Corrosion rates of different material samples at different monitoring points
Experimental period Material Corrosion rate / μma-1
A B C D
1 a G 0.283 0.285 0.363 0.486
N 0.297 0.373 0.665 2.444
3 a G 0.111 0.107 0.119 0.174
N 0.087 0.219 0.247 2.774
Table 3  Corrosion rate of test samples
Fig.6  Protection efficiency of zinc coating at different monitoring points
Material A B C D
G1 C2 C2 C2 C2
N1 C1 C1 C1 C2
G3 C2 C2 C2 C2
N3 C1 C1 C1 C2
Table 4  Estimation of atmospheric corrosion rating based on the corrosion rate of carbon steel and zinc coating
Fig.7  SEM image (a) and EDS result (b) of galvanized steel sample exposed for 3 a at monitoring point D
Fig.8  SEM image (a) and EDS result (b) of corrosion products of carbon steel sample exposed for 3 a at monitoring point D
Fig.9  XRD pattern of the corrosion products of carbon steel sample exposed for 3 a at monitoring point D
[1] de la Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel[J]. Corros. Sci., 2011, 53: 604
[2] Morales J, Díaz F, Hernández-Borges J, et al. Atmospheric corrosion in subtropical areas: XRD and electrochemical study of zinc atmospheric corrosion products in the province of Santa Cruz de Tenerife (Canary Islands, Spain)[J]. Corros. Sci., 2006, 48: 361
[3] Morales J, Díaz F, Hernández-Borges J, et al. Atmospheric corrosion in subtropical areas: Statistic study of the corrosion of zinc plates exposed to several atmospheres in the province of santa cruz de tenerife (Canary Islands, Spain)[J]. Corros. Sci., 2007, 49: 526
[4] Veleva L, Acosta M, Meraz E. Atmospheric corrosion of zinc induced by runoff[J]. Corros. Sci., 2009, 51: 2055
[5] Oh S J, Cook D C, Townsend H E. Atmospheric corrosion of different steels in marine, rural and industrial environments[J]. Corros. Sci., 1999, 41: 1687
[6] Muster T H, Bradbury A, Trinchi A, et al. The atmospheric corrosion of zinc: the effects of salt concentration, droplet size and droplet shape[J]. Electrochim. Acta, 2011, 56: 1866
[7] Portella M O G, Portella K F, Pereira P A M, et al. Atmospheric corrosion rates of copper, galvanized steel, carbon steel and aluminum in the metropolitan region of Salvador, BA, Northeast Brazil[J]. Procedia Eng., 2012, 42: 171
[8] Casta?o J G, de la Fuente D, Morcillo M. A laboratory study of the effect of NO2 on the atmospheric corrosion of zinc[J]. Atmos. Environ., 2007, 41: 8681
[9] Qu Q, Yan C, Wan Y, et al. Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc[J]. Corros. Sci., 2002, 44: 2789
[10] Chen Z Y, Persson D, Leygraf C. Initial NaCl-particle induced atmospheric corrosion of zinc-effect of CO2 and SO2[J]. Corros. Sci., 2008, 50: 111
[11] Natesan M, Venkatachari G, Palaniswamy N. Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India[J]. Corros. Sci., 2006, 48: 3584
[12] Karlén C, Odnevall Wallinder I, Heijerick D, et al. Runoff rates and ecotoxicity of zinc induced by atmospheric corrosion[J]. Sci. Total Environ., 2001, 277: 169
[13] de la Fuente D, Casta?o J G, Morcillo M. Long-term atmospheric corrosion of zinc[J]. Corros. Sci., 2007, 49: 1420
[14] Chen Y Y, Chung S C, Shih H C. Studies on the initial stages of zinc atmospheric corrosion in the presence of chloride[J]. Corros. Sci., 2006, 48: 3547
[15] Shi Y Y, Zhang Z, Zhang J Q, et al. Review of atmospheric corrosion of zinc and zinc alloy[J]. J. Chin. Soc. Corros. Prot., 2005, 25(6): 373 (施彦彦, 张昭, 张鉴清等. 锌及其合金的大气腐蚀研究现状[J]. 中国腐蚀与防护学报, 2005, 25(6): 373)
[16] Liang C F, Hou W T. Sixteen-year atmospheric corrosion exposure study of steels[J]. J. Chin. Soc. Corros. Prot., 2005, 25(1): 1 (梁彩凤, 侯文泰. 环境因素对钢的大气腐蚀的影响[J]. 中国腐蚀与防护学报, 2005, 25(1): 1)
[17] Tang Q H, Zhang X Y. Mapping of typical atmospheric corrosion at home and abroad[J]. Equip. Environ. Eng., 2010, 7(4): 81 (唐其环, 张先勇. 国内外典型大气腐蚀图及其绘制[J]. 装备环境工程, 2010, 7(4): 81)
[18] Wang Z Y, Yu G C, Han W. Atmospheric corrosion law of three non-ferrous metals in Shenyang area[J]. Chin. J. Nonferrous Met., 2003, 13(2): 367 (王振尧, 于国才, 韩薇. 3种有色金属在沈阳地区的大气腐蚀规律[J]. 中国有色金属学报, 2003, 13(2): 367)
[19] NAHB Research Center. Galvanized steel framing for residential buildings [R]. RP06-1, Washington: American Iron and Steel Institute/Steel Framing Alliance, 2007
[20] Wang Z, Liu J, Wu L, et al. Study of the corrosion behavior of weathering steels in atmospheric environments[J]. Corros. Sci., 2013, 67: 1
[21] Hou W T, Yu J D, Liang C F. Atmospheric corrosion of carbon steels and low alloy steels[J]. J. Chin. Soc. Corros. Prot., 1993, 13(4): 291 (侯文泰, 于敬敦, 梁彩凤. 碳钢及低合金钢的大气腐蚀[J]. 中国腐蚀与防护学报, 1993, 13(4): 291)
[22] Wang C Z. Study on the abnormality of steels corrosion at tropic seashore atmosphere [D]. Chongqing: Chongqing University, 2006 (王成章. 热带海洋大气环境中钢腐蚀异常原因研究 [D]. 重庆: 重庆大学, 2006)
[23] Zhang X G. Efficiency of corrosion protection of steel by galvanizing and prospect for new coating development[J]. J. Chin. Soc.Corros. Prot., 2010, 30(2): 166 (章小鸽. 镀锌保护钢铁的效率和新型锌镀层的发展前景[J]. 中国腐蚀与防护学报, 2010, 30(2): 166)
[24] Misawa T, Asami K, Hashimoto K, et al. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel[J]. Corros. Sci., 1974, 14: 279
[25] Raman A, Kuban B. Infrared spectroscopic analysis of phase transformation processes in rust layers formed on weathering steels in bridge spans[J]. Corrosion, 1988, 44: 483
[26] R?sler K, Baum H, Kukurs O, et al. Character and behavior of a layer of corrosion products on low-alloy steels in natural conditions[J]. Prot. Met., 1981, 17: 514
[27] Antunes R A, Costa J, Araujo D L. Characterization of atmospheric corrosion products formed on steels[J]. Mater. Res., 2003, 6: 403
[28] Luo R, Jiang X H, Wang X J, et al. Research on the atmospheric corrosion mechanism and rust layer evolution for carbon steel[J]. Corros. Sci. Prot. Technol., 2013, 25(5): 433 (罗睿, 姜新华, 王秀静等. 碳钢大气腐蚀机制及锈层演化研究[J]. 腐蚀科学与防护技术, 2013, 25(5): 433)
[29] Wang J J, Guo X D, Zheng W L, et al. Analysis of the corrosion rust on weathering steel and carbon steel exposed in marine atmosphere for three years [J]. Corros. Prot., 2002, 23(7): 288 (王建军, 郭小丹, 郑文龙等. 海洋大气暴露3年的碳钢与耐候钢表面锈层分析 [J]. 腐蚀与防护, 2002, 23(7): 288)
[1] CAO Jingyi, FANG Zhigang, LI Liang, FENG Yafei, WANG Xingqi, SHOU Haiming, YANG Yange, CHU Guangzhe, YIN Wenchang. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Fresh Water and Salt Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[2] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[3] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[4] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[5] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[6] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[7] DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[8] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[9] Ping XU,Shuo ZHANG,Shuai SI,Yajun ZHANG,Changzheng WANG. Corrosion Mechanism of Carbon Steel Induced by Protein and Polysaccharide-the Main Components of EPS[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[10] Xiankang ZHONG,Junying HU. Corrosion Behavior of X65 Carbon Steel in CO2Containing Liquids with Constant pH and Ferrous Ion Concentration[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[11] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[12] Yue QIAO, Zhiping ZHU, Lei YANG, Zhifeng LIU. Monitoring and Simulated Experiments of Oxidation-Reduction Potential of Boiler Feedwater at High Temperatures[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[13] Wanjun PENG, Jiheng DING, Hao CHEN, Haibin YU. Corrosion Inhibition of Bio-based Inhibitor Furfuryl Glycidyl Ether[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[14] Guofu OU, Lulu ZHAO, Kai WANG, Kuanxin WANG, Haozhe JIN. Dew-Point Corrosion Behavior of 10# Carbon Steel inHCl-H2O Environment[J]. 中国腐蚀与防护学报, 2018, 38(1): 33-38.
[15] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
No Suggested Reading articles found!