Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (3): 279-286    DOI: 10.11902/1005.4537.2014.024
Current Issue | Archive | Adv Search |
Influence of Yb Addition on Resistance to Exfoliation Corrosion of Aluminum Alloy 2519A
Bo JI1,Xinming ZHANG1(),Zhuofu ZHANG2,Lingying YE1,Wenjian LI3
1. School of Materials Science and Engineering, Central South University, Changsha 410083,China
2. Hunan Fugu Mechanical and Electrical Equipment Co., Ltd., Changsha 410100, China
3. China Nuclear Industry 23 Construction Co., Ltd., Yangjiang 529941, China
Download:  HTML  PDF(8499KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Influence of Yb additions on resistance to exfoliation corrosion of aluminum alloy 2519A was investigated in EXCO solution at ambient temperature, while the alloys were characterized by means of hardness test, tensile test, optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that, with the addition of 0.2%Yb, the amount of the coarse phases AlCu phase and AlCuFeMn decreased in the alloy due to the formation of phases of Yb compounds with Al, Cu, Fe and Mn, of which the chemical activity was inferior to that of the phases AlCu and AlCuFeMn. Meantime, the Yb addition could also refine the θ ′ phase and increase its area fraction, as a result, the continuous precipitation of θ (Al2Cu) phase at grain boundaries could be prevented, and the width of the precipitation free zone (PFZ) was shrunken at grain boundaries,therefore the resistance to exfoliation corrosion of the alloy could be improved. However an excessive addition of Yb might deteriorate the mechanical properties and the resistance to exfoliation corrosion of the alloys.

Key words:  aluminum alloy 2519A      Yb      microstructure      exfoliation corrosion     

Cite this article: 

Bo JI,Xinming ZHANG,Zhuofu ZHANG,Lingying YE,Wenjian LI. Influence of Yb Addition on Resistance to Exfoliation Corrosion of Aluminum Alloy 2519A. Journal of Chinese Society for Corrosion and protection, 2015, 35(3): 279-286.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.024     OR     https://www.jcscp.org/EN/Y2015/V35/I3/279

Alloy No. Cu Mg Mn Zr Ti Yb Al
1 5.8 0.2 0.3 0.2 0.05 0 Bal.
2 5.8 0.2 0.3 0.2 0.05 0.2 Bal.
3 5.8 0.2 0.3 0.2 0.05 0.4 Bal.
Table 1  Nominal compositions of the tested alloys
Fig.1  Vickers hardness curves of the present alloys aged at 165 ℃
Fig.2  Morphologies of the alloys with different contents of Yb after exfoliation corrosion for 6 h (a), 12 h (b), 24 h (c), 48 h (d) and 96 h (e)
Mass fraction of Yb / % Ultimate tensile strength σb / MPa Yield strength σ0.2 / MPa Elongation δ / %
Blank 483.4 437.6 13
0.2 509.3 460.3 14
0.4 467.9 425.9 12
Table 2  Tensile strength of the alloys with different Yb contents aged at 165 ℃
Time/h Alloy 1 Alloy 2 Alloy 3
6 EA- P EA
12 EB- EA+ EB
24 EB+ EB EC
48 EC- EB+ EC+
96 ED EC ED
Table 3  Ratings of exfoliation corrosion after immersioning in EXCO for different time
Fig.3  Cross-sections (a~c) and exfoliation products (d~f) of the alloys with 0% (a, d), 0.2% (b, e) and 0.4% (c, f) Yb after exfoliation corrosion test
Fig.4  SEM images of the alloys with 0% (a), 0.2% (b) and 0.4% (c) Yb after peak aging
Fig.5  EDS results of typical second-phase particles in the alloys with 0% (a), 0.2% (b) and 0.4% (c) Yb
Fig.6  Surface morphologies of the peak aged alloys with 0% (a), 0.2% (b) and 0.4% (c) Yb after exfoliation corrosion for 30 min
Position in Fig.5 Al Cu Yb Fe Mn
A 63.08 31.13 5.78 --- ---
B 73.37 18.72 6.21 --- 1.70
C 74.07 18.88 --- 5.30 1.57
D 63.71 12.89 2.55 0.37 0.17
  
Position in Fig.7 Al Cu Yb Fe Mn O
A 62.21 33.45 --- 3.46 0.88 ---
B 67.25 25.77 --- --- --- 6.97
C 72.54 23.23 2.91 0.22 1.10 ---
D 38.20 56.39 0.55 3.77 1.09 ---
E 81.47 18.53 --- --- --- ---
F 59.18 --- 0.47 3.80 1.38 ---
  
Fig.7  EDS results of typical second-phase particles in the peak aged alloys with 0% (a), 0.2% (b) and 0.4% (c) Yb after exfoliation corrosion for 30 min
Fig.8  TEM images of the grains (a~c) and grain boundaries (d~f) of the peak aged alloys containing 0% (a, d), 0.2% (b, e) and 0.4% (c, f) Yb
[1] Carter H B, Saxena A. Transient crack growth behavior in aluminum alloys C415-T8 and 2519-T87[J]. Eng. Fracture Mech., 1999, 62(1): 1
[2] Devincent S M, Devletian J H, Gedeon S A. Weld properties of the newly developed 2519-T87 aluminum armor alloy[J]. Weld. J., 1988, 3(7): 33
[3] Dymek S, Dollar M. TEM investigation of age-hardenable Al 2519 alloy subjected to stress corrosion cracking tests[J]. Mater. Chem. Phys., 2003, 81(2/3): 286
[4] Fisher J, James J. Aluminum alloy 2519 in military vehicles[J]. Adv. Mater. Process., 2002, 160(9): 43
[5] Wang W T. Effect of Yb and Ce additions on microstructures and mechanical properties of aluminium alloy 2519 sheet [D]. Changsha: Central South University, 2010 (王文韬. 镱、铈对2519A铝合金板材组织与力学性能的影响 [D]. 长沙: 中南大学, 2010)
[6] Fang H C, Chen K H, Zhang Z, et al. Effect of Yb additions on microstructures and mechanical properties of 7A60 aluminium alloy[J]. Trans. Nonferrous Met. Soc. China, 2008, 18(1): 28
[7] Wu Z G, Song M, He Y G. Effects of Yb additions on microstructure and tensile properties of Al-Mg alloys[J]. Rare Met., 2009, 33(5): 616 (吴正刚, 宋旼, 贺跃刚. Yb对铝-镁合金显微组织和力学性能的影响[J]. 稀有金属, 2009, 33(5): 616)
[8] Keddam M, Kuntz C. Exfoliation corrosion of aluminum alloys examined by electrode impedance[J]. Electrochim. Acta, 1997, 42(1): 87
[9] Li J F, Cao F H. Reviewon exfoliation susceptibility of aluminumalloys and quantitative measurement method[J]. J. Chin. Soc. Corros. Prot., 2004, 24(1): 55 (李劲风, 曹发和. 铝合金剥蚀敏感性及其定量研究方法[J]. 中国腐蚀与防护学报, 2004, 24(1): 55)
[10] Zuo S Z, Li D. Review on the exfoliation corrosion of aluminum alloys[J]. Mater. Prot., 1994, 27(12): 23 (左尚志, 李荻. 国内外铝合金剥蚀研究的现状[J]. 材料保护, 1994, 27(12): 23)
[11] Su J X, Zhang Z. Review on the intergranular corrosion and exfoliation corrosion of aluminum alloys[J]. J. Chin. Soc. Corros. Prot., 2005, 25(3): 187 (苏景新, 张昭. 铝合金的晶间腐蚀和剥蚀[J]. 中国腐蚀与防护学报, 2005, 25(3): 187)
[12] Robinson M J, Jackson N C. The influence of grain structure and intergranular corrosion rate on exfoliation and stress corrosion cracking of high strength Al-Cu-Mg alloys[J]. Corros. Sci., 1999, 41(5): 1013
[13] Liu Y, Zhang X M, Zhou G X. Effect of predeformation amount on exfoliation corrosion resistance of 2519 aluminium alloy[J]. J. Mater. Therm. Treat., 2006, 27(6): 61 (刘瑛, 张新明, 周古昕等. 预变形量对2519铝合金抗剥落腐蚀性能的影响[J]. 材料热处理学报, 2006, 27(6): 61)
[14] Zhang X M, Ji B, Ye L Y. Influence of Yb addition on intergranular corrosion resistance of aluminium alloy 2519A[J]. J. Cent. South Univ.(Sci. Technol.), 2013, 44(12): 1 (张新明, 暨波, 叶凌英. 稀土Yb对2519A铝合金抗晶间腐蚀性能的影响[J]. 中南大学学报 (自然科学版), 2013, 44(12): 1)
[15] ASTMG. Exfoliation corrosion susceptibility in 2XXX and 7XXX series aluminium alloys (EXCO test)[S], 2001
[16] Li J F, Birbilis N, Li C X, et al. Influence of retrogression temperature and time on the mechanical properties and exfoliation corrosion behavior of aluminium alloy AA7150[J]. Mater. Charact., 2009, 60(11): 1334
[17] Xiao D H, Huang B Y, Chen K H. Microstructure and corrosion properties of Al-Cu-Mg-Ag-(Sc) alloys[J]. J. Cent. South Univ., 2009, 40(5): 1252 (肖代红, 黄伯云, 陈康华. Al-Cu-Mg-Ag-(Sc) 合金的显微组织与腐蚀性能[J]. 中南大学学报 (自然科学版), 2009, 40(5): 1252)
[1] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[2] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[3] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[4] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[5] WANG Haiwei, CHANG Sen, LUAN Xin'gang, SONG Xuemei, WANG Zhen, LI Yanzhang, CHEN Jianli, ZHANG Jirong, HAN Ming, QIU Dangui. Preparation and Properties of Ceramics Composed of Nano-Al2O3 and Polysiloxane-polyborosilicate-TiB2 Modified Polysilborazane as High Temperature Adhesive for SiC Based Ceramics[J]. 中国腐蚀与防护学报, 2020, 40(4): 367-372.
[6] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[7] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[8] WEI Xinxin,ZHANG Bo,MA Xiuliang. TEM Investigation to Oxide Scale Formed on Single Crystal Alloy FeCr15Ni15 at High Temperature[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[9] YU Mei,WEI Xindi,FAN Shiyang,LIU Jianhua,LI Songmei,ZHONG Jinyan. Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[10] FU Anqing,ZHAO Mifeng,LI Chengzheng,BAI Yan,ZHU Wenjun,MA Lei,XIONG Maoxian,XIE Junfeng,LEI Xiaowei,LV Naixin. Effect of Laser Surface Melting on Microstructure and Performance of Super 13Cr Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[11] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[12] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[13] Xiuling LAN,Guangming LIU,Jiesheng ZHOU,Zhilei LIU,Shusen PENG,Maodong LI. Preparation and Properties of Organosilicone/SiO2Hybrid Sol Modified Acrylic Resin[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[14] Min CAO, Li LIU, Zhongfen YU, Ying LI, Fuhui WANG. Exfoliation Corrosion Behavior of 2A02 Al-alloy in a Simulated Marine Atmospheric Environment[J]. 中国腐蚀与防护学报, 2018, 38(5): 502-510.
[15] Kai WANG, Yaoyong YI, Qinghua LU, Jianglong YI, Zexin JIANG, Jinjun MA, Yu ZHANG. Effect of Peak Temperatures on Corrosion Behavior of Thermal Simulated Narrow-gap Weld Q690 High Strength Steel[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
No Suggested Reading articles found!