Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (5): 459-464    DOI: 10.11902/1005.4537.2013.197
Current Issue | Archive | Adv Search |
Study of Corrosion Behavior of Copper Beneath a Droplet by Means of Wire Beam Electrode Technology
ZHANG Penghui1, WANG Yanhua1(), PENG Xin2, LIU Zaijian1, ZHOU Yuanyuan1, WANG Jia1,3
1. Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
2. Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan 316000, China
3. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(3900KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of copper beneath a droplet of 0.6 mol/L NaCl solution was studied by means of wire beam electrode technique combined with electrochemical impedance spectroscopy (EIS). The results show that the distribution of galvanic current remains negative at the center and positive at the periphery of copper surface covered by the droplet at the initial stage. And the polarity reversed with the extension of time, i.e. the positive one at the center and the negative one at the periphery. To study more comprehensively, the EIS measurement was conducted at an interval of 2 h for two copper wires selected separately at the center and the periphery, and the change of the local impedances was found consistent with that of the current distributions. Meanwhile, the surface morphology of the electrode and the composition of the corrosion products were also examined by using scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). At the beginning, reddish brown oxide products formed much quickly and earlier at the periphery rather than at the center. Then, with the extension of time, the electrode surface was totally covered by corrosion products from the periphery to the center. But, the corrosion products film at the center was severely damaged and replaced by malachite green products, while that remained less destructed relatively at the edge. Further, the corrosion mechanism of copper beneath the droplet was explored that it was the formation and transformation of the corrosion products dominated the changes of the distribution of the corrosion current.

Key words:  copper      wire beam electrode      droplet      electrochemical impedance spectroscopy      atmospheric corrosion     
ZTFLH:  O646  

Cite this article: 

ZHANG Penghui, WANG Yanhua, PENG Xin, LIU Zaijian, ZHOU Yuanyuan, WANG Jia. Study of Corrosion Behavior of Copper Beneath a Droplet by Means of Wire Beam Electrode Technology. Journal of Chinese Society for Corrosion and protection, 2014, 34(5): 459-464.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.197     OR     https://www.jcscp.org/EN/Y2014/V34/I5/459

Fig.1  Galvanic current distributions on the WBE surface with a drop of 50 μL NaCl solution after corrosion for 2 h (a), 4 h (b), 6 h (c), 8 h (d), 12 h (e) and 24 h (f)
Fig.2  Corrosion morphologies of WBE surface with a drop of 50 μL NaCl solution after corrosion for 2 h (a), 4 h (b), 6 h (c), 8 h (d), 12 h (e) and 24 h (f)
Fig.3  Morphological change of the surface of wire outside the droplet, at the center and the edge: (a) out the droplet after 2 h, (b) out the droplet after 24 h, (c) at the center after 2 h, (d) at the center after 24 h, (e) at the edge after 2 h, (f) at the edge after 24 h
Fig.4  EIS of local electrode 72# at the center (a) and 83# wire at the edge (b)
Time / h O
Center/Edge
Cu
Center/Edge
Cl
Center/Eedge
2 h 1.27/1.34 98.73/98.66 ---/---
6 h 5.89/7.90 93.93/92.10 0.18/---
12 h 5.65/4.24 93.48/95.42 0.87/0.34
24 h 9.55/7.58 87.72/91.43 2.73/0.99
Table 1  Weight persent of the elements on the wire after corrosion for different time
Fig.5  Variations of impedance reciprocal changes of 72# wire at the center and 83# at the edge with time
[1] Liao X N, Cao F H, Zheng L Y, et al. Corrosion behaviour of copper under chloride-containing thin electrolyte layer[J]. Corros. Sci., 2011, 53(10): 3289-3298
[2] Huang H L, Guo X P, Zhang G A, et al.Effect of direct current electric field on atmospheric corrosion behavior of copper under thin electrolyte layer[J]. Corros. Sci., 2011, 53(10): 3446-3449
[3] Huang H L, Dong Z H, Chen Z Y, et al.The effects of Cl- ion concentration and relative humidity on atmospheric corrosion behaviour of PCB-Cu under adsorbed thin electrolyte layer[J]. Corros. Sci., 2011, 53(4): 1230-1236
[4] Huang H L, Guo X P, Zhang G A, et al. The effects of temperature and electric field on atmospheric corrosion behaviour of PCB-Cu under absorbed thin electrolyte layer[J]. Corros. Sci., 2011, 53(5): 1700-1707
[5] Liu Q, Wang Q J, Du Z Z. Study of the corrosion of copper in natural environment[J]. New Tech. New Pro., 2008, (8): 80-82
(刘琼, 王庆娟, 杜忠泽. 铜在自然环境中的腐蚀研究[J]. 新技术新工艺, 2008, (8): 80-82)
[6] Liu Y Y, Wang W, Wang Y H, et al. Electrochemical characteristics of 304 stainless steel under a droplet of NaCl[J]. J Chin. Soc. Corros. Prot., 2012, 32: 28-33
(刘圆圆, 王伟, 王燕华等.NaCl液滴下304不锈钢表面电化学性质研究[J]. 中国腐蚀与防护学报, 2012, 32: 28-33)
[7] Nishikata A, Ichihara Y, Tsuru T.An application of electrochemical impedance spectroscopy to atmospheric corrosion study[J]. Corros. Sci., 1995, 37(6): 897-911
[8] Nishikata A, Ichihara Y, Tsuru T.Electrochemical impedance spectroscopy of metals covered with a thin electrolyte layer[J]. Electrochim. Acta, 1996, 41(7/8): 1057-1062
[9] El-Mahdy G A. Atmospheric corrosion of copper under wet/dry cyclic conditions[J]. Corros. Sci., 2005, 47(6): 1370-1383
[10] Peng X, Wang J, Shan C, et al. Corrosion behavior of long-time immersed rusted carbon steel in flowing seawater[J]. Acta. Metall. Sin., 2012, 48: 1260-1266
(彭欣, 王佳, 山川等. 带锈碳钢在流动海水中的长期腐蚀行为[J]. 金属学报, 2012, 48: 1260-1266)
[11] Zou Y, Zhen Y Y, Wang Y H, et al. Cathodic electrochemical behaviors of mild steel in seawater[J]. Acta. Metall. Sin., 2010, 46: 123-128
(邹妍, 郑莹莹, 王燕华等. 低碳钢在海水中的阴极电化学行为[J]. 金属学报, 2010, 46: 123-128)
[12] Zhang X, Wang W, Wang J.A novel device for the wire beam electrode method and its application in the ennoblement study[J]. Corros. Sci., 2009, 51(6): 1475-1479
[13] Zhang D L, Wang W, Li Y. An electrode array study of electrochemical inhomogeneity of zinc in zinc/steel couple during galvanic corrosion[J]. Corros. Sci., 2010, 52(4): 1277-1284
[14] Tan Y J, Liu T, Aung N N. Novel corrosion experiments using the wire beam electrode:(III) Measuring electrochemical corrosion parameters from both the metallic and electrolytic phases[J]. Corros. Sci., 2006, 48(1): 53-66
[15] Zhong Q D, Zhang Z. Study of anti-contamination performance of temporarily protective oil coatings using wire beam electrode[J].Corros. Sci., 2002, 44(12): 2777-2787
[16] Zhong Q D. Study of corrosion behaviour of mild steel and copper in thin film salt solution using the wire beam electrode[J]. Corros. Sci., 2002, 44(5): 909-916
[17] Muster T H, Bradbury A, Trinchi A, et al. The atmospheric corrosion of zinc: The effects of salt concentration, droplet size and droplet shape[J]. Electrochim. Acta, 2011, 56(4): 1866-1873
[18] Wang W, Zhang X, Wang J. The influence of local glucose oxidase activity on the potential/current distribution on stainless steel: A study by the wire beam electrode method[J]. Electrochim. Acta, 2009, 54(23): 5598-5604
[19] Zhang X, Wang W, Wang J. Characterization of electrochemical heterogeneity of interface of an artificial biofilm/metal by means of a wire beam electrode[J]. Corros. Sci. Prot. Technol., 2009, 21: 242-244
(张霞, 王伟, 王佳. 利用丝束电极技术研究模拟微生物膜/金属界面的电化学不均匀性[J]. 腐蚀科学与防护技术, 2009, 21: 242-244)
[20] Liao X N, Cao F H, Chen A N, et al. In-situ investigation of atmospheric corrosion behavior of bronze under thin electrolyte layers using electrochemical technique[J]. Trans. Nonferrous Met. Soc., 2012, 22(5): 1239-1249
[21] Glass G K, Page C L, Short N R, et al. The analysis of potentiostatic transients applied to the corrosion of steel in concrete[J]. Corros. Sci., 1997, 39(9): 1657-1663
[1] ZHANG Yifan, YUAN Xiaoguang, HUANG Hongjun, ZUO Xiaojiao, CHENG Yulin. Corrosion Behavior of Cu-Al Laminated Board in Neutral Salt Fog Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[2] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[3] CAO Jingyi, FANG Zhigang, LI Liang, FENG Yafei, WANG Xingqi, SHOU Haiming, YANG Yange, CHU Guangzhe, YIN Wenchang. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Fresh Water and Salt Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[4] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[5] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[6] WANG Shuai,LIU Xinkuan,LIU Ping,CHEN Xiaohong,LI Wei,MA Fengcang,HE Daihua,ZHANG Ke. Effect of Sn and Al on Corrosion Resistance of Ni-free White Copper Alloy[J]. 中国腐蚀与防护学报, 2020, 40(1): 45-50.
[7] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[8] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[9] DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[10] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[11] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[12] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[13] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[14] Bobo HUANG,Ping LIU,Xinkuan LIU,Pinxiu MEI,Xiaohong CHEN. Seawater Corrosion Behavior of New 70-1 Tin Brass Net in Waters off Dachen Island for Two Years[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[15] Xiuling LAN,Guangming LIU,Jiesheng ZHOU,Zhilei LIU,Shusen PENG,Maodong LI. Preparation and Properties of Organosilicone/SiO2Hybrid Sol Modified Acrylic Resin[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
No Suggested Reading articles found!