Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (4): 321-326    DOI: 10.11902/1005.4537.2013.156
Current Issue | Archive | Adv Search |
Comparative Study on Corrosion of X65 Pipeline Steel Welded Joint in Simulated Shallow and Deep Sea Environment
LIU Zhiyong1, WAN Hongxia1, LI Chan2, DU Cuiwei1, LI Xiaogang1, LIU Xiang1
1. Key Lab of Corrosion, Erosion and Surface Technique Beijing, Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China; 2. Nuclear and Radiation Safety Center, Ministry of Environmental Protection, Beijing 100082, China
Download:  HTML  PDF(2557KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The short-term corrosion behavior of the welded joint of X65 pipeline steel was comparatively studied in artificial laboratory environments, which aims to simulate the real environment of shallow and deep sea respectively, by using mass loss test, potentiodynamic polarization curve measurement and corrosion morphological observation by scanning electron microscopy (SEM). Results show that the corrosion rate of the welded joint in simulated shallow sea water was faster than that in the simulated deep sea environment. In the simulated shallow sea environment the weld joint exhibited mainly pitting corrosion; however in the simulated deep sea environment, relatively serious corrosion occurred near the fusion-line (FL) while non obvious corrosion could be observed on the welded zone. The corrosion potential of heat affected zone (HAZ) was lower than that of the welded zone and matrix of X65 pipeline steel both in simulated deep and shallow sea environments, which caused galvanic effect in welded zone and accelerated the corrosion rate of HAZ. Thereby the formed corrosion product film on HAZ was thicker with a larger charge-transfer resistance Rt.
Key words:  pipeline steel      welded joint      sea corrosion     
Received:  12 September 2013     
ZTFLH:  TG172.5  

Cite this article: 

LIU Zhiyong, WAN Hongxia, LI Chan, DU Cuiwei, LI Xiaogang, LIU Xiang. Comparative Study on Corrosion of X65 Pipeline Steel Welded Joint in Simulated Shallow and Deep Sea Environment. Journal of Chinese Society for Corrosion and protection, 2014, 34(4): 321-326.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.156     OR     https://www.jcscp.org/EN/Y2014/V34/I4/321

[1] Zhao D Y, Yu J X, Wang C, et al. Risk-based assessment method for submarine pipeline [J]. Ocean Technol., 2010, 29(1): 56-58 (赵冬岩, 余建星, 王琮等. 基于风险的海底管道安全评估方法研究 [J]. 海洋技术, 2010, 29(1): 56-58)
[2] Schumacher M. Sea Water Corrosion Handbook [M]. New Jersey, USA: Noyes Data Corporation, 1979
[3] Dexter S C. Hand Book of Oceanographic Materials [M]. New York: John Wiley & Sons, 1979
[4] Chandler K A. Marine and Offshore Corrosion [M]. London: Butterworths, 1985
[5] Du C W, Liu Z Y, Liang P, et al. Short-term corrosion behavior of X70 pipeline steel with different microstructure in Ku'erle soil with saturated water [J]. Heat Treat. Met., 2008, 33(6): 80-84 (杜翠薇, 刘智勇, 梁平等. 不同组织X70钢在库尔勒含饱和水土壤中的短期腐蚀行为 [J]. 金属热处理, 2008, 33(6): 80-84)
[6] Di G L, Liu Z Y, Du C W, et al. Stress corrosion cracking of X70 steel with different microstructures in acid soil simulation solution [J]. Corros. Prot., 2009, 30(3): 149-151 (翟国丽, 刘智勇, 杜翠薇等. 不同组织X70钢在酸性土壤模拟溶液中的应力腐蚀敏感性 [J]. 腐蚀与防护, 2009, 30(3): 149-151)
[7] Fan Z, Liu J Y, Li S L, et al. Microstructure and seawater corrosion to welding joint of X70 pipeline steel [J]. J. Southwest Petroleum Univ. (Nat. Sci.), 2009, 31(5): 171-174 (范舟, 刘建仪, 李士伦等. X70管线钢焊接接头组织及其海水腐蚀规律 [J]. 西南石油大学学报 (自然科学版), 2009, 31(5): 171-174)
[8] Zhou J Q, Wang H Z, Ma Q H, et al. The electrochemical impedance spectroscopy of seawater piping brass welded joint in artificial seawater [J]. Corros. Prot., 2007, 28(8): 403-406 (周建奇, 王宏智, 马青华等. 海水管路黄铜焊接接头在人工海水中的电化学阻抗谱 [J]. 腐蚀与防护, 2007, 28(8): 403-406)
[9] Xu L Y, Jing H Y, Cao J, et al. H 2 S stress corrosion investigation of pipeline steel welded joints [J]. Trans. Chin. Weld Inst., 2010, 31(1):12-17 (徐连勇, 荆洪阳, 曹军等. 管线钢焊接接头H 2 S应力腐蚀试验分析 [J]. 焊接学报, 2010, 31(1): 12-17)
[10] 23(6): 75-78 (金晓军, 霍立兴, 张玉凤. X65管线钢焊缝金属断裂韧度的统计分布 [J]. 焊接学报, 2002, 23(6): 75-78)
[11] Wei Y H, Lu J Z. Deep sea environment of carbon steel corrosion and protection [J]. Total Corros. Control, 2012, 26(3): 1-4 (韦云汉, 芦金柱. 深海环境碳钢的腐蚀与防护 [J]. 全面腐蚀控制, 2012, 26(3): 1-4)
[12] Ma Eid N. Localized corrosion at welds in structural under desalination plant conditions, Part1: effect of surface roughness and type of welding electrode [J]. Desalination, 1989, 73: 397-406
[13] Melchers R E. Pitting corrosion of mild steel in marine immersion environment-Part 2: Variability of maximum pit depth [J]. Corrosion, 2004, 60(10): 937-944
[14] Melchers R E. Statistical characterization of pitting corrosion-Part1: Data analysis [J]. Corrosion, 2005, 61(7): 655-665
[15] Jia Z J, Du C W, Li X G. Effect of temperature on electrochemical corrosion behavior of N80 steel in CO 2 saturated NaCl solution [J]. Corros. Prot., 2011, 32(8): 613-616 (贾志军, 杜翠薇, 李晓刚. 温度对N80钢在CO 2 饱和的NaCl溶液中的腐蚀电化学行为的影响 [J]. 腐蚀与防护, 2011, 32(8): 613-616)
[1] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[3] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[4] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[5] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[6] CHEN Xu, LI Shuaibing, ZHENG Zhongshuo, XIAO Jibo, MING Nanxi, HE Chuan. Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivityat Daqing Area[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[7] HUANG Chen,HUANG Feng,ZHANG Yu,LIU Haixia,LIU Jing. Galvanic Corrosion Behavior for Weld Joint of High Strength Weathering Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[8] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[9] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[10] Xianbo SHI,Chunguang YANG,Wei YAN,Dake XU,Maocheng YAN,Yiyin SHAN,Ke YANG. Microbiologically Influenced Corrosion of Pipeline Steels[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[11] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[12] Zihan LIAO, Bo SONG, Ze REN, Chuan HE, Xu CHEN. Electrochemical Corrosion Behavior of Matrix and Weld Seam of X70 Steel in Na2CO3+NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[13] Jun WANG, Chao FENG, Bicao PENG, Yi XIE, Minghua ZHANG, Tangqing WU. Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[14] Xiaolin WANG, Maocheng YAN, Yun SHU, Cheng SUN, Wei KE. AC Interference Corrosion of Pipeline Steel Beneath Delaminated Coating with Holiday[J]. 中国腐蚀与防护学报, 2017, 37(4): 341-346.
[15] Jidong REN,Rongjie GAO,Yu ZHANG,Yong LIU,Tian DING. Fabrication of Amphiphobic Surface of Pipeline Steel by Acid Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2017, 37(3): 233-240.
No Suggested Reading articles found!