Please wait a minute...
中国腐蚀与防护学报  2009, Vol. 29 Issue (2): 93-98    
  研究报告 本期目录 | 过刊浏览 |
嗜热硫酸盐还原菌生长特征及其对碳钢腐蚀的影响
刘宏芳;刘涛
华中科技大学化学与化工学院 材料化学与服役失 效湖北省重点实验室 武汉 430074
GROWTH CHARACTERISTICS OF THERMOPHILE SULFATE-REDUCING BACTERIA AND ITS EFFECT ON CARBON STEEL
LIU Hongfang; LIU Tao
Key Laboratory of Materials Chemistry Service Failure; Department of Chemistry;Huazhong University of Science and Technology; Wuhan 430074
全文: PDF(1493 KB)  
摘要: 

采用API-RP38推荐的培养基,从渤海油田分离出嗜热硫酸盐还原菌(SRB), 对其进行了初步鉴定,并研究了该菌种的生长特征。用电化学手段研究了该嗜热菌种在高温条件下对碳钢腐蚀的影响。结果表明,嗜热SRB生长周期短于常温SRB的生长周期。细菌能在40℃~80℃范围内生长,最佳生长温度为60℃。最佳生长pH范围为6.0~7.6,最适宜pH在7.0左右。 60℃静态挂片实验表明,该嗜热菌对碳钢腐蚀较严重,是空白培养基中的2.6倍。碳钢表面生成不均匀的生物膜,能谱仪(EDS)分析表明,在生物膜不均匀区域腐蚀产物中FeSx化合物结构不同。 SRB生长过程中电极自腐蚀电位先正移再负移,电化学阻抗谱(EIS)研究表明生物膜的结构随SRB生长而发生变化,从而导致基体材料发生高温微生物腐蚀。

关键词 硫酸盐还原菌电化学生物膜    
Abstract

The API-RP38 medium was used to culture the thermophile sulfate-reducing bacteria (SRB) isolated from Bohai oilfield,and the bacteria was preliminarily identified according to its growth characteristics. Additionally, electrochemical means were taken to study the effect of the bacteria on carbon steel. The results show that the growth cycle of the bacteria is shorter than that cultured under normal temperature. The optimum growth temperature of the bacteria is at 60℃ within the growth temperature range from 40℃ to 80℃. The growth pH ranges from 6.0 to 7.6, and the optimum is about 7.0. The mass loss measurement at 60 ℃ in the culture medium indicates that the corrosion on carbon steel in thermophile SRB solution is 2.6 times more serious than that in the blank medium. As an uneven biofilm occurs on the carbon steel surface,energy dispersive spectrometer (EDS) analysis indicates that the corrosion products have various FeSx structures in the uneven biofilm. The free corrosion potential increases in the first few days, and later decreases. The electrochemical impedance spectroscopy (EIS) shows that the structure changes in accordance with the growth of the bacteria. Therefore, high temperature microbial corrosion occurs on the matrix materials.

Key wordssulfate-reducing bacteria    electrochemistry    biofilm
收稿日期: 2007-07-13     
ZTFLH: 

O646

 
基金资助:

教育部留学回国人员科研启动基金资助项目(2006)

通讯作者: 刘宏芳     E-mail: Liuhf2003@yahoo.com.cn
Corresponding author: LIU Hongfang     E-mail: Liuhf2003@yahoo.com.cn

引用本文:

刘宏芳 刘涛. 嗜热硫酸盐还原菌生长特征及其对碳钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2009, 29(2): 93-98.
LIU Hong-Fang. GROWTH CHARACTERISTICS OF THERMOPHILE SULFATE-REDUCING BACTERIA AND ITS EFFECT ON CARBON STEEL. J Chin Soc Corr Pro, 2009, 29(2): 93-98.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2009/V29/I2/93

[1] Wang M Y,Liang X B,Zheng Y P,et al. Advanced identification of sulfate-reducing bacteria and its detection method [J]. J. Microbio., 2005, 25(6):81-84
    (王明义, 梁小兵, 郑亚萍等.硫酸盐还原菌鉴定和检测方法的研究进展[J]. 微生物学杂志, 2005, 25(6):81-84)
[2] Cao J W, Shen P, Li Z Y.Extremophiles [M]. Wuhan: Wuhan University Press, 2004
    (曹军卫, 沈萍, 李朝阳. 嗜极微生物[M]. 武汉: 武汉大学出版社,2004)
[3] Zhang D Q, Xu Q J, Lu Z. Study on intramolecular synergistic inhibitive effects of benzotriazoly moiety and imidazoly moiety [J]. J. Chin. Soc. Corros. Prot., 1999,19(5): 280-284
    (张大全, 徐群杰, 陆柱.苯并三唑和咪唑分子内缓蚀协同作用的研究[J]. 中国腐蚀与防护学报, 1999,19(5): 280-284)
[4] Dockins W S, Olson G J,McFeters G A, et al. Dissimilatory bacterial sulfate reduction in Montana ground waters [J]. Geomicrobiol. J., 1980, 2: 83-97
[5] Liu H F, Xu L M, Zheng J S. Steel corrosion under SRB biofilm: a review [J]. Oilfield Chem., 2000, 17(1):93-96
    (刘宏芳, 许立铭, 郑家燊. 硫酸盐还原菌生物膜下钢铁腐蚀研究概况[J]. 油田化学, 2000, 17(1):93-96)
[6] Buchanan R E, Gibbons N E. Bergey’s Manual of Determinative Bacteriology (8th ed.) [M]. Beijing: Science Press,1984
    (R. E. 布坎南, N. E. 吉本斯.伯杰细菌鉴定手册(第八版)[M]. 北京: 科学出版社, 1984)
[7] Ma F, Wei L, Shan D, et al. Identification and research of growth factor of one function bacteria of sulfate reducing bacteria-anaerofilum pentosovorans A9 [J]. J. Harbin Inst. Technol.,2007, 39(2): 238-241
    (马放, 魏利, 山丹等.硫酸盐还原菌Anaerofilum pentosovrans A9鉴定及其生长因子研究[J].哈尔滨工业大学学报, 2007, 39(2): 238-241)
[8] Zhou D Q. Microbiology [M]. Beijing: Higher Education Press,1993
    (周德庆. 微生物学教程[Q]. 北京: 高等教育出版社,1993)
[9] Xu C M,Zhang Y S,Cheng G X,et al.Investigation of sulfate-reducing bacteria on pitting of 316L stainless steel in cooling water system for oil refinery [J]. J.Chin. Soc. Corros. Prot., 2007, 27(1): 48~53
    (胥聪敏, 张耀亨, 程光旭等. 炼油厂冷却水系统硫酸盐还原菌对316L不锈钢点腐蚀的研究[J]. 中国腐蚀与防护学报, 2007, 27(1):48~53)
[10] Li X B,Wang J, Wang W. The electrochemical method of biofilm monitoring in seawater [J]. J.Chin. Soc. Corros. Prot., 2005, 25(2): 84-87
    (李相波,王佳, 王伟. 海洋环境微生物附着的电化学检测技术[J].中国腐蚀与防护学报, 2005, 25(5): 84-87)
[11] Cheng G, Wang J, Li X B, et al. Advance in research on microorganism attachment and ennoblement of open-circuit-potential of passive metals in seawater [J]. Corros. Sci. Prot. Technol., 2006, 18(6):422-425 
    (成光, 王佳, 李相波等.海水环境中微生物附着与钝性金属开路电位正移现象的研究进展[J].腐蚀科学与防护技术, 2006, 18(6): 422-425)
[12] Burde L. Microbiologically influenced corrosion [A].NACE International[C]. Houston, Texas, 1997: 4-7
[13] Young L Y, Mitchell R. The role of microorganisms in marine fouling [J]. Int. Bio. Bull., 1973, 9: 105-109

[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[5] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[6] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[7] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[8] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[9] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[10] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[11] 付海波, 刘晓茹, 孙媛, 曹大力. 环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[12] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[13] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[14] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[15] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.