Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (1): 237-243     CSTR: 32134.14.1005.4537.2024.249      DOI: 10.11902/1005.4537.2024.249
  研究报告 本期目录 | 过刊浏览 |
不锈钢在乙醇燃烧气氛环境中的腐蚀行为研究
谢冬柏1, 赖天1,2, 汤智杰2, 多树旺2(), 邓时3
1 潍坊科技学院 山东省农机装备用材料工程高校特色实验室 寿光 262700
2 江西科技师范大学 江西省材料表面工程重点实验室 南昌 330013
3 新疆警察学院刑事技术系 乌鲁木齐 830011
Corrosion Behavior of 304 Stainless Steel in Simulated Ethanol Fire Atmosphere
XIE Dongbai1, LAI Tian1,2, TANG Zhijie2, DUO Shuwang2(), DENG Shi3
1 University Featured Laboratory of Materials Engineering for Agricultural Machinery of Shandong Province, Weifang University of Science and Technology, Shouguang 262700, China
2 Jiangxi Key Laboratory of Materials Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
3 Department of Forensic Science, Xinjiang Police College, Urumqi 830011, China
引用本文:

谢冬柏, 赖天, 汤智杰, 多树旺, 邓时. 不锈钢在乙醇燃烧气氛环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 237-243.
Dongbai XIE, Tian LAI, Zhijie TANG, Shuwang DUO, Shi DENG. Corrosion Behavior of 304 Stainless Steel in Simulated Ethanol Fire Atmosphere[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 237-243.

全文: PDF(10257 KB)   HTML
摘要: 

本文使用自研的火灾环境模拟系统模拟了乙醇助燃剂的火场现场环境,研究了304不锈钢在热空气和乙醇助燃剂燃烧气氛中600~800 ℃时,表面氧化产物的变化及其氧化行为特征。通过对比分析试样在乙醇燃烧气氛和空气中的氧化动力学、氧化层的相结构、成分组成及氧化产物的形貌特征,澄清304不锈钢在火场乙醇助燃剂燃烧环境中的氧化物生长规律及热失效行为。结果表明,乙醇燃烧气氛改变了不锈钢氧化模式,使其表面无法形成连续的保护性氧化膜,发生灾难性氧化,表面氧化层是由岛状的Fe2O3和Fe3O4构成。乙醇助燃剂燃烧所形成的氧化性气氛和湍流会加速不锈钢中Cr的消耗,从而使表面发生灾难性氧化导致氧化层剥落,火场中温度的升高也能加速氧化腐蚀的进行。根据这些氧化特征有助于判断火场中是否有助燃剂成分存在。

关键词 火灾调查乙醇助燃剂模拟燃烧氧化    
Abstract

Combustion accelerant is a kind of highly flammable, volatile, and easily polluted substance, which is difficulty to extract and identify in the fire scenes. In order to solve the issue of identifying the accelerant, a liquid combustion atmosphere simulation system was developed in the Lab to simulate the fire environment involving ethanol accelerant. Herein, the oxidation behavior of 304 stainless steel was studied via the Lab simulation system in the combustion atmosphere of air-ethanol at 600-800 oC in terms of the corrosion kinetics, the composition and morphylogy of corrosion products, and the steel microstructure variations. The resuts show that the oxidation behavior of 304 stainless steel in the ethanol combustion atmosphere differ significantly from that in air, making it impossible to form a continuous protective oxide scale on its surface and thus catastrophic oxidation occurs. The surface oxide scale is composed of island-like oxide clusters of Fe2O3 and Fe3O4. Furthermore, oxidizing atmosphere induced by ethanol flux combustion along with turbulence will accelerate the chromium consumption from the steel, as well as enhanced the separation of oxide scale. Besides the oxidation rate also increases with the increasing test temperature. It follows that the above findings may be helpful to identify if there existed or not accelerant components in the fire scenes.

Key wordsfire investigations    ethanol    accelerants    simulates combustion    oxidation
收稿日期: 2024-08-11      32134.14.1005.4537.2024.249
ZTFLH:  TG174  
基金资助:潍坊科技学院高层次人才科研启动项目(KJRC2021007)
通讯作者: 多树旺,E-mail:dbxie@aliyun.com,研究方向为高温防护涂层,空间环境效应机理及防护技术,能源催化材料
Corresponding author: DUO Shuwang, E-mail: dbxie@aliyun.com
作者简介: 谢冬柏,男,1973年生,博士,教授
图1  304不锈钢在乙醇燃烧气氛中600~800 ℃的氧化动力学曲线
图2  乙醇燃烧气氛下304不锈钢不同温度及时间的SEM形貌
图3  304不锈钢表面不同温度及气氛中氧化后的XRD谱
RegionMass fraction / %Atomic fraction / %
FeCrNiSiMnFeCrNiSiMn
165.7916.327.210.651.0258.699.651.050.140.61
251.4413.705.361.000.8132.915.810.560.160.35
表1  304不锈钢在不同区域的EDS测试结果
图4  304不锈钢在乙醇燃烧气氛和热空气中氧化75 min后的SEM形貌
图5  乙醇燃烧气氛304不锈钢在不同温度下的截面形貌及元素线分布
1 Xie D B, Wang W, Duo S W. Influence of liquid accelerant on scaling behavior of stainless steel in fire: an experimental study [J]. Fire Mater., 2019, 43: 831
2 Xie D B, Hong H, Duo S W, et al. Effect of kerosene combustion atmosphere on the mild steel oxide layer [J]. Sci. Rep., 2022, 12: 379
doi: 10.1038/s41598-021-04377-3 pmid: 35013478
3 Xie D B, Wang W, Lv S L, et al. Effect of simulated combustion atmospheres on oxidation and microstructure evolution of aluminum alloy 5052 [J]. Fire Mater., 2018, 42: 278
4 Lai T, Xie D B, Duo S W, et al. Initial oxidation behavior of pure iron in a simulated combustion environment containing gasoline [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 445
4 赖 天, 谢冬柏, 多树旺 等. 纯铁在模拟汽油燃烧环境中的初期氧化行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 445
5 Liu Z J, Yu L L, Zhang M. Effect of fire temperature on microstructure and properties of copper welded joint [J]. Hot Work. Technol., 2010, 39(3): 17
5 刘政军, 于丽丽, 张 明. 火灾温度对紫铜焊接接头组织性能的影响 [J]. 热加工工艺, 2010, 39(3): 17
6 Yang Y F, Sun W Y, Chen M H, et al. Oxidation behavior of a single crystal ni-based superalloy N5 and its nanocrystalline coating at 900 oC in O2 and O2 + 20%H2O environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 55
6 杨依凡, 孙文瑶, 陈明辉 等. 镍基单晶高温合金N5及其纳米晶涂层在900 ℃下O2和O2 + 20%H2O气氛中的氧化行为 [J]. 中国腐蚀与防护学报, 2023, 43: 55
doi: 10.11902/1005.4537.2022.040
7 Liang Z Y, Zhang C, Qu J Y, et al. Oxidation behavior in air-steam mixed atmosphere at 1000 oC of four typical high-temperature alloys for gas turbine [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 355
7 梁志远, 张 超, 曲劲宇 等. 某燃气轮机燃烧室合金高温蒸汽氧化行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 355
doi: 10.11902/1005.4537.2023.105
8 Hu L H, Yi H L, Yang W J, et al. Effect of water content on corrosion behavior of X65 pipeline steel in supercritical CO2 fluids [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 576
8 胡丽华, 衣华磊, 杨维健 等. 水含量对超临界CO2输送管道腐蚀的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 576
doi: 10.11902/1005.4537.2023.227
9 Hong H, Xie D B, Duo S W, et al. Device for simulating and stabilizing combustion environment of combustion improver [J]. Chin Pat, CN201910634235.9, 2019
9 洪 昊, 谢冬柏, 多树旺 等. 模拟稳定助燃剂燃烧环境装置 [P]. 中国专利, CN201910634235.9, 2019)
10 Hong H, Xie D B, Duo S W, et al. Second device for simulating stable combustion improver combustion environment [P]. Chin Pat, 201910634259.4, 2019
10 洪 昊, 谢冬柏, 多树旺 等. 模拟稳定助燃剂燃烧环境装置之二 [P]. 中国专利, 201910634259.4, 2019)
11 Xie D B, Deng S, Shan G, et al. Detection method for liquid combustible material in fire scene environment [P]. Chin Pat, 201510909997.7, 2015
11 谢冬柏, 邓 时, 单 国 等. 一种火场环境中液体可燃物的检测方法 [P]. 中国专利, 201510909997.7, 2015)
12 Stott F H. Influence of alloy additions on oxidation [J]. Mater. Sci. Technol., 1989, 5: 734
13 Caplan D. Effect of cold work on the oxidation of Fe-Cr alloys in water vapour at 600 oC [J]. Corros. Sci., 1966, 6: 509
14 Higginson R L, Green G. Whisker growth morphology of high temperature oxides grown on 304 stainless steel [J]. Corros. Sci., 2011, 53: 1690
15 Jepson M A E. Oxidation of austenitic and duplex stainless steels during primary processing [D]. Loughborough: Loughborough University, 2008
16 Gao Z C, Wang Z Y. The mechanism of alcohol combustion reaction [J]. J. Liaoning Univ. (Nat. Sci. Ed.), 2003, 30: 63
16 高志崇, 王子瑛. 醇燃烧反应机理探讨 [J]. 辽宁大学学报(自然科学版), 2003, 30: 63
17 Shang Z Y. Research on high temperature Oxidation behavior of several stainless steels [D]. Taiyuan: Taiyuan University of Technology, 2012
17 尚竹亚. 几种不锈钢材料高温氧化行为的研究 [D]. 太原: 太原理工大学, 2012
18 Asteman H, Svensson J E, Johansson L G, et al. Indication of chromium oxide hydroxide evaporation during oxidation of 304L at 873K in the presence of 10% water vapor [J]. Oxid. Met., 1999, 52: 95
19 Asteman H, Segerdahl K, Svensson J E, et al. The influence of water vapor on the corrosion of chromia-forming steels [J]. Mater. Sci. Forum, 2001, 369-372: 277
20 Asteman H, Svensson J E, Norell M, et al. Influence of water vapor and flow rate on the high-temperature oxidation of 304L; effect of chromium oxide hydroxide evaporation [J]. Oxid. Met., 2000, 54: 11
[1] 张彩云, 李帅, 鲍泽斌, 朱圣龙, 王福会. 氧化不同时间(Ni, Pt)Al涂层的退除及再涂覆行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 201-208.
[2] 张伟东, 崔宇, 刘莉, 王福会. 预氧化GH4169合金在中温固态NaClO2 + H2O气氛中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 182-190.
[3] 严豪杰, 殷若展, 汪文君, 孙擎擎, 伍廉奎, 曹发和. TiAl合金表面电沉积SiO2 涂层抗循环氧化性能研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 81-91.
[4] 董子烨, 吴毅恒, 卢翀, 沈朝, 曾小勤. 固体氧化物燃料电池金属连接体研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 46-60.
[5] 张晗, 刘轩溱, 黄爱辉, 赵晓峰, 陆杰. 热障涂层金属粘结层制备与研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 20-32.
[6] 范春华, 吴钱林, 薛山, 葛佳璐. 添加CrSi对火驱N80碳钢注气井氧化行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(1): 231-236.
[7] 任明泽, 董琳, 杨冠军. 环境障涂层材料及结构优化研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 33-45.
[8] 郭静波, 杨守华, 周子翼, 牟仁德, 谢云, 舒小勇, 戴建伟, 彭晓. 激光增材制造AlCoCrFeNiSi高熵合金的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 217-223.
[9] 许习文, 舒小勇, 陈智群, 何海瑞, 董舒赫, 房雨晴, 彭晓. DD6单晶Ni基高温合金表面CVDAl涂层的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 148-154.
[10] 张勇康, 翟海民, 李旭强, 李文生. Fe基非晶涂层在Na2SO4 + K2SO4Na2SO4 +NaCl混合盐中的热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 92-102.
[11] 陈辉, 徐福斌, 方亚雄, 朱忠亮. Super304H不锈钢在605 ℃640 ℃超临界水中的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 209-216.
[12] 裴海清, 肖竞博, 李微, 于昊玉, 温志勋, 岳珠峰. Al-O元素聚集对镍基单晶高温合金氧化影响的第一性原理研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 173-181.
[13] 李开洋, 翟蕴龙, 胡新宇, 吴宏, 刘彬, 邢少华, 侯健, 张繁, 张乃强. 共晶高熵合金高温腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(6): 1377-1388.
[14] 孙琼琼, 贾玺泉, 徐震霖, 何宜柱, 范光伟, 张威, 李欢. 304430不锈钢铸坯氧化皮结构及结合力研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1649-1655.
[15] 吴亮亮, 殷若展, 陈朝旭, 梁君岳, 孙擎擎, 伍廉奎, 曹发和. Ti45Al8.5Nb合金表面Zr-SiO2 复合涂层的制备及其抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.