油气田异种金属焊接接头硫化物应力腐蚀开裂研究进展
Research Progress on Sulfide Stress Corrosion Cracking of Dissimilar Weld Joints in Oil and Gas Fields
通讯作者: 董立谨,E-mail:ljdong89@163.com,研究方向为材料环境敏感断裂
收稿日期: 2023-08-26 修回日期: 2023-09-25
基金资助: |
|
Corresponding authors: DONG Lijin, E-mail:ljdong89@163.com
Received: 2023-08-26 Revised: 2023-09-25
Fund supported: |
|
作者简介 About authors
刘久云,男,1999年生,硕士生
针对油气田异种金属焊接接头硫化物应力腐蚀开裂(SSCC)行为,概述了焊接接头的种类及微观组织结构,并讨论了异种金属焊接接头的SSCC机理,重点综述了微观组织结构、温度、CO2、应力及焊后热处理等因素对异种金属焊接接头SSCC的影响规律,最后对油气田异种金属焊接接头SSCC的未来研究方向提出了建议与展望。
关键词:
Dissimilar metal weld joints are widely used in oil and gas fields. However, the environmentally assisted cracking is easy to occur in and around the fusion region of weld joints, which may seriously affect the safety of oil and gas transportation and cause huge economic losses. Therefore, it is necessary to deeply study the sulfide stress corrosion cracking (SSCC) behavior of dissimilar metal weld joints in acidic oil and gas environments. In this paper, the research progress on SSCC of dissimilar metal weld joints in oil and gas fields were summarized. Firstly, the types and microstructure of the weld joints are introduced. Secondly, the mechanism of the SSCC of weld joints is discussed briefly. The effect of microstructure of dissimilar metal welded joints, temperature, CO2 partial pressure, applied stress and post-welding heat treatment on the SSCC of dissimilar metal welded joints were reviewed. In the end, the research progress of the SSCC of dissimilar metal welded joint in oil and gas fields in recent decades is reviewed, and the future research direction is prospected.
Keywords:
本文引用格式
刘久云, 董立谨, 张言, 王勤英, 刘丽.
LIU Jiuyun, DONG Lijin, ZHANG Yan, WANG Qinying, LIU Li.
海洋油气和陆地酸性油气田含有H2S和CO2等气体,易引发低碳钢集输管道腐蚀失效。双金属复合管兼具低碳钢的高强度与镍基合金的高耐蚀性的双重优点,因而适用于酸性油气开采。目前,双金属复合管一般使用X52、X65和X70等低碳钢作为管道主体,以Inconel 825、Inconel 625和Inconel 718等合金作为管道内衬。双金属复合管之间或者与阀门、连接器、歧管的连接一般使用焊接,形成多种不同类型的异种金属焊接接头。例如,深海采油树一般采用AISI 4130、AISI 8630和F22钢制造,因不能满足密封面高耐蚀性的要求,选择在密封处堆焊Inconel 625合金[1]。此外,在歧管与低碳钢连接时,例如AISI 8630钢或F22钢与X65低碳钢之间使用Inconel 625合金作为填充金属进行焊接连接,形成X65/Inconel 625、8630/Inconel 625、F22/Inconel 625等形式的异种金属焊接接头;或将双金属复合管进行环缝焊接,形成X65/Inconel 825、X80/2507超级双相不锈钢等焊接结构[2~5]。
1 油气田异种金属焊接接头的微观组织特点
油气田异种金属焊接接头一般分为焊缝、熔合区和热影响区。其中熔合界面、热影响区的组织变化对异种金属焊接接头的抗SSCC性能有着至关重要的影响。
1.1 熔合区
异种金属熔化焊接过程中,熔池的边界会出现熔合区,该区域与母材成分大体相同而与熔池成分相差较大。熔合区在焊接过程中持续受到熔池对流、机械搅拌和热循环等多方面影响,加之焊缝与母材之间存在化学成分的差异,形成了独特的微观组织。
宏观偏析是熔合界面处的常见现象,通常表现为大范围内微观组织的不均匀分布[13]。由于金属间液相线差异,异种金属焊接接头熔合界面容易形成部分混合区(PMZ)[14]。Buntain等[15]研究表明,在X80/Inconel625焊接接头中,X80母材具有更高的液相线温度,因此熔化的X80在进入熔池后会快速凝固,形成PMZ。通常情况下,流动液体在固体壁上的速度为零,因此PMZ紧邻熔合界面形成,其形态一般可分为连续型和不连续型,前者表现为平行于熔合界面的条带,而后者则具有沙滩、半岛和岛屿等多种形貌[16]。不同形貌的PMZ在微观组织上存在差异,如图1所示。海滩PMZ仅由板条马氏体构成,而半岛PMZ则由马氏体和铁素体半岛共同组成[17]。
图1
图1
海滩PMZ和半岛PMZ的SEM图像
Fig.1
SEM images of the beach PMZs (a) and the peninsula PMZs (b)
化学成分和温度梯度是马氏体组织在熔合界面处形成的原因。Dai等[18]对8630/Inconel625异种金属焊接接头研究表明,靠近熔合边界的8630钢区域主要为马氏体。液相线温度差的增大加快了熔池冷却速度,进而导致稀释区变窄并促进马氏体相变[16]。在X80/Inconel 625、F22/Inconel 625、8630/Inconel 625等焊接接头的熔合界面还存在马氏体薄层,其宽度和形态取决于焊接稀释率的大小,并受焊后热处理(PWHT)的影响[19]。Dodge等[20]研究了PWHT对8630/Inconel625焊接接头熔合界面的影响,表明焊接后熔合边界处存在的马氏体薄层经过650℃ × 1 h的PWHT后转变为回火马氏体。不仅如此,在未经PWHT的F22/Inconel 625接头中同样观察到了类似纳米级宽度的马氏体,但经650℃ × 10 h的PWHT后演变为回火形态的马氏体带;进行650℃ × 100 h的PWHT后马氏体片层几乎完全消失,取而代之的是碳化物带。值得一提的是,两种接头经过650℃ × 100 h的PHWT后都在靠近熔合边界区观察到一个过渡区域,然后才是碳化物带。不同PWHT条件下熔合界面的TEM图像如图2所示[21]。
图2
图2
F22/Inconel625和8630/Inconel625焊接接头在不同PWHT条件下的TEM像[21]
Fig.2
TEM images of F22/Inconel 625 and 8630/Inconel 625 weld joints at different PWHT conditions: (a) F22/Inconel 625 as-weld condition, (b) F22/Inconel 625 at (650 ± 5)℃ for 10 h, (c) F22/Inconel 625 at (650 ± 5)℃ for 100 h, (d) 8630/Inconel 625 as-weld condition, (e) 8630/Inconel 625 at (675 ± 5)℃ for 1 h, (f) 8630/Inconel 625 at (675 ± 5)℃ for 10 h[21]
1.2 热影响区
在焊接热输入作用下,母材发生明显组织和性能变化的区域称为热影响区[22]。首先,热输入会驱使碳迁移,导致紧邻熔合界面的母材形成脱碳区,该区域主要由铁素体组成。除脱碳区外,热影响区还可细分为粗晶区、细晶区和临界区,这些区域所受到的热输入的影响依次减弱。热输入对粗晶区的宽度和晶粒大小有决定作用。细晶区位于临界区和粗晶区之间,折中的位置使其既会受到热输入的影响,又承受了较快的冷却速率,导致晶粒无法在再结晶阶段充分生长,最终形成细小的晶粒。临界区一般与母材相邻,所受热输入的影响最小,其微观组织、晶界类型和力学性能等一般与母材接近。
Deng等[23]比较了X80钢粗晶热影响区经热循环作用后的显微组织变化,表明板条状贝氏体经950℃热处理后转变为块状铁素体和粒状贝氏体,经1350℃热处理后又重新形成。Sadeghian等[24]研究了热输入对S32750/X65异种金属焊接接头组织结构的影响,表明提高钨极氩弧焊(GTAW)的热输入会导致热影响区中铁素体含量降低,且在低热输入条件下热影响区由贝氏体和铁素体构成,但在高热输入条件下会产生珠光体。Zhao等[25]研究表明,X80钢经焊接热循环后,临界热影响区由无序分布的铁素体组成;细晶热影响区则以多边形铁素体和粒状贝氏体为主;粗晶热影响区中则形成了板条贝氏体组织。此外,冷却速率对热影响区的微观组织也有显著影响。Li等[26]研究表明,当冷却速率从10℃·s-1提升到20℃·s-1时,X80钢热影响区的组织为粒状贝氏体、板条状贝氏体和准多边形铁素体。当冷却速率进一步增加到40℃·s-1以上时,热影响区组织以粗大的板条贝氏体为主,且具有清晰的原奥氏体晶界。当冷却速率降低到1℃·s-1以下时,可以观察到少量的珠光体。
此外,焊接工艺也是影响热影响区微观组织的关键因素。本课题组对比了GTAW与冷金属过渡(CMT)焊接接头热影响区的微观组织,表明CMT焊接工艺能极大地降低稀释率,并能减小X80/Inconel 625接头热影响区的宽度[27]。此外,在CMT焊接接头的堆焊层中几乎没有观察到焊接缺陷,原因是低热输入有效限制了母材熔化,降低了熔化母材与熔池不均匀混合的概率。虽然CMT焊接接头的熔合界面处也存在马氏体薄层,但在重叠区的回火作用下,马氏体层中形成了逆变奥氏体。不难看出,低热输入的焊接工艺对热影响区微观组织有积极影响。
PWHT可以将热影响区存在的硬脆相回火,从而降低硬度并消除残余应力。本课题组研究了不同PWHT条件下X80/Inconel 625 CMT异种金属焊接接头的微观组织,表明经620℃ × 20 h PWHT后非搭接区域的热影响区由板条马氏体/贝氏体、粗大的铁素体以及马奥岛转变为含细小的铁素体及少量的残余奥氏体的组织。高温下碳的扩散导致板条马氏体/贝氏体溶解,促进了铁素体的形核与长大,而马奥岛中马氏体分解后保留下残余奥氏体。搭接区域的组织由粒状贝氏体、细小的铁素体、少量的珠光体以及弥散分布的马奥岛转变为铁素体和少量残余奥氏体。670℃ × 10 h PWHT有助于消除热影响区中的硬脆相,搭接区域主要组织为铁素体,而非搭接区域的组织主要由细小铁素体和少量马氏体组成[28]。
此外,在9Ni/Inconel 625焊接接头中,575℃下的单一PWHT将热影响区的硬度从350 ± 9 HV降低到257 ± 7 HV,而通过双重回火制度(670℃ × 2 h + 600℃ × 2 h)可将硬度降低到246 ± 7 HV[3]。尽管双重回火的热影响区具有较低的硬度和更高的奥氏体体积分数,但与575℃的单一回火相比,该PWHT工艺在提高抗开裂性能方面并没有很好的效果。
综上所述,PWHT可以改变热影响区的微观组织结构,但不同的异种金属焊接接头所对应的最优PWHT制度并不相同,需进行针对性的研究。
2 异种金属焊接接头的SSCC机理
最近的研究结果表明,在低应力下仅依靠氢的作用很难引起连续开裂,腐蚀对异种金属焊接接头的SSCC同样有重要影响。Dai等[18]认为异种金属焊接接头的SSCC是应力腐蚀开裂与氢致开裂的综合作用。Zhou等[32]研究表明,由于X60管线钢和Inconel 625合金之间的电偶效应加速了与阴极金属相邻的金属阳极的腐蚀,在熔合界面处形成了腐蚀台阶,加剧了界面处的应力集中和氢吸附(图3a)。如图3b所示,腐蚀进一步导致台阶高度增加,在应力作用下熔合界面积累大量位错导致结合力降低,且裂纹尖端吸收的氢增强了位错滑移和塑性应变,当应力足以撕裂弱熔合边界时,微裂纹成核,在腐蚀作用下沿熔合界面扩展导致SSCC形核[33]。但由于位错堆积,裂纹尖端产生塑性变形,导致裂纹钝化,SSCC裂纹扩展停止(图3c),此时阳极溶解在重新激活裂纹扩展过程起重要作用[34],其一是因裂纹扩展暴露的新鲜金属缺乏腐蚀产物膜的保护导致其更易溶解,其二是阳极溶解使得裂纹前沿更加尖锐,重新激活裂纹扩展,如图3d。综上所述,SSCC最可能的机制是拉应力下氢脆和腐蚀的综合作用。然而,有学者提出,强腐蚀作用可能会使裂纹尖端钝化从而阻碍裂纹生长,抑制SSCC发展[35]。对于熔合界面而言,强烈的电偶腐蚀作用是否反而会阻碍局部缺陷或微裂纹向宏观裂纹的发展还不得而知。此外,腐蚀对SSCC裂纹萌生和扩展的影响是否存在差异尚未被完全揭示,未来仍需加强SSCC机理研究。
图3
图3
X60管线钢和Inconel 625合金异种金属焊接接头SSCC裂纹扩展示意图[32]
Fig.3
Schematic of crack growth of the dissimilar metal welded joint of X60 pipeline steel (base metal) and Inconel 625 alloy (weld metal) in SSCC test using four-point bending with 80% AYS in H2S solution (5% NaCl + 0.5% HAc with 0.1 MPa H2S)[32]: (a) stress concentration and dislocation occurred at the fusion boundary after immersion, (b) micro-crack nucleated when stress concentration was high enough to tear the fusion boundary, (c) crack growth was suspended due to crack blunting, (d) anodic dissolution could keep the crack tip sharp and reactivate the crack growth
3 异种金属焊接接头SSCC研究
3.1 环境的影响
3.1.1 CO2的影响
CO2与H2S通常共存于酸性油气环境中,CO2分压会影响焊接接头的抗SSCC性能。Zhou等[32]分别研究了X60/Inconel 625焊接接头在不同环境下的SSCC行为,结果表明焊接接头的熔合界面在含H2S的溶液中完全断开,但在只含CO2的环境未发生开裂。Jeon等[36]研究了高碳钢(T95、C-110、Q-125)在含不同比例CO2的H2S环境中的SSCC行为,结果表明:当CO2的分压从0提高到20%时,3种钢的SSCC敏感性都在增强,表现为断裂延伸率随着CO2分压上升而降低。这是因为CO2分压增加会降低溶液的pH值,提高H原子浓度进而加剧氢的渗透作用,从而导致SSCC敏感性增加。但在CO2分压>20%的情况下,SSCC敏感性反而随着CO2分压的升高而降低,因为高CO2分压促进合金表面形成了致密的FeCO3膜,对氢渗透有抑制作用[37]。到目前为止,CO2分压对SSCC的影响机制还未完整阐明,还需对此进行深入研究。
3.1.2 温度的影响
环境温度主要通过影响氢的速率扩散而影响SSCC。Haldorsen等[38]研究了F22/Inconel 625焊接接头在充氢环境下80和4℃的SSCC行为。4℃下焊接接头发生明显开裂,而80℃下焊接接头的抗开裂能力显著提高,这表明SSCC对温度非常敏感[35]。在80℃下对F22/Inconel 625焊接接头原位预充氢48 h后,对其施加阴极保护的同时分别在80、60、40、20和4℃进行拉伸实验,结果表明4℃时焊接接头的韧性最低,但可能受阴极保护的影响。撤去阴极保护再进行上述实验步骤后可见,焊接接头的抗开裂能力显著提高,并在80℃时韧性达到最大值。这些结果表明,高温下的异种金属焊接接头具有更强的抗开裂性能。因此,Dodge等[39]认为,低温下韧性更低更可能是受到氢吸收的影响,F22/Inconel 625焊接接头更容易在低温下发生断裂。然而,Laureys等[40]认为,在低于室温的温度下,氢的扩散速率太慢,无法在陷阱和关键区域大量积聚,氢脆发生的概率减小;而在高温下,氢的迁移率大大增强,捕获减少,脱捕更容易。Xing等[41]指出,升高温度有利于氢移动并增加表面氢浓度,但限制了缺陷附近氢的积累,降低了氢脆发生的概率。此外,温度升高还会加速熔合界面的电偶腐蚀,但能否促进SSCC还未得到彻底揭示。综上所述,环境温度对异种金属焊接接头影响较为复杂,在未来的工作中还需进一步研究温度对SSCC的影响及机制。
3.2 敏感组织结构
焊接接头的熔合界面和热影响区是SSCC敏感区域,其中PMZ、马氏体、碳化物和贝氏体以及界面类型都对SSCC有重要影响。
3.2.1 马氏体
马氏体是一种脆硬相,非常容易发生氢致开裂。马氏体中的高密度位错提供了大量氢捕获位点,增加马氏体的补氢能力;氢在马氏体中的扩散系数和扩散通量较低,表明氢更容易残留在马氏体及其界面,当氢浓度达到临界值时诱发裂纹萌生[42]。如前所述,异种金属焊接接头熔合界面处会不可避免地形成纳米级马氏体层,具有较高的SSCC敏感性[43]。本课题组研究证实CMT焊制备的X80/Inconel 625焊接接头的非搭接区域存在连续分布于熔合界面的新鲜马氏体,是诱发SSCC裂纹萌生和扩展的主要原因[19]。针对F22/Inconel 625、8630/Inconel 625等焊接接头的研究也得到同样结果[4]。本课题组研究表明搭接区的薄马氏体层在焊接回火作用下部分转变为逆变奥氏体,逆变奥氏体的氢溶解度更高,有效地缓解了马氏体界面的氢聚集,降低了熔合界面的SSCC敏感性[44]。
3.2.2 PMZ
一般来说,包含马氏体的PMZ对SSCC的敏感性更高[45]。Dodge等[46]对8630/Inconel 625异种焊接接头分析后认为,海滩状PMZ主要由板条马氏体构成。本课题组研究了PMZ对X80/Inconel 625焊接接头SSCC的影响,结果表明海滩PMZ和半岛PMZ均会促进SSCC萌生[65]。与不含PMZ的熔合区相比,包含PMZ的熔合区中的裂纹会优先沿着Inconel 625/PMZ界面生长,尺寸较大的PMZ导致局部阳极溶解和氢聚集,PMZ与Inconel 625和X80交界处形成的腐蚀缺陷很容易转变为裂纹[47]。不仅如此,海滩PMZ比半岛PMZ表现出更高的SSCC敏感性。与海滩PMZ相比,半岛结构中更严重的阳极溶解可以加速裂纹萌生,但经过普通熔合区时裂纹尖端会发生钝化,阻碍了裂纹扩展。上述研究证实了含有PMZ焊接接头更容易发生SSCC。
3.2.3 碳化物
3.2.4 贝氏体
氢原子被金属吸收后,在热影响区中,很容易被高硬度的脆性相的边界捕获。贝氏体作为“硬相”组织易引发裂纹的萌生,并促使裂纹沿其边界扩展,对提升SSCC性能极为不利。在铁素体/退化珠光体(F/DP)、铁素体/针状铁素体(F/AF)和铁素体/贝氏体(F/B) 3种不同显微组织的焊接接头中,氢捕获效率按DP、BF和AF的顺序增加,AF效率最高[50]。尽管贝氏体的氢捕获效率低于AF,但贝氏体微观结构的SSCC敏感性比AF更高。此外,贝氏体中渗碳体和铁素体的界面面积很大,这使其具有更多的氢捕获位置[51]。以条状贝氏体为主的焊缝组织对氢原子的捕获效率高于AF,导致焊缝组织比AF具有更高的抗开裂性能[52]。但Da等[53]认为粒状贝氏体由于捕获的氢很少而具有较好的抗开裂性能。
综上所述,不同形态的贝氏体对氢的捕获效率有所不同,粒状贝氏体因其较低的氢捕获效率而具有更高的抗开裂性能,在未来工作中可以对粒状贝氏体比例与抗开裂性能之间的关系进一步研究。
3.2.5 界面类型
异种金属焊接接头的SSCC敏感组织区域主要为熔合界面和热影响区,熔合界面为典型的大角度界面,而热影响区的大角度界面和小角度界面的比例一般在55%~60%和40%~45%,界面类型对SSCC有重要作用[54]。Arafin等[55]研究了X65管线钢的应力腐蚀开裂,结果表明大角度界面比小角度界面具有更高的能量,可以为裂纹提供快速扩展的路径,而小角度界面可以提高其抗晶间腐蚀开裂能力。然而,Xu等[56]认为,当晶粒细化后,更多的大角度界面在裂纹扩展过程中会消耗更多的能量并引起裂纹转向,可以提高X80钢环焊缝的抗开裂能力。不仅如此,小角度界面还被认为对抗裂性能不利,因为当裂纹平行于小角度界面扩展时消耗能量较少,阻碍裂纹扩展的能力较弱,并且起到连通原奥氏体界面的作用,使得裂纹由穿晶转变为沿晶扩展[57]。
本课题组研究了X80/Inconel 625熔合界面区域内不同相界面的SSCC敏感性,表明奥氏体-马氏体相边界(A-M)比马氏体-铁素体相边界(M-F)更容易发生开裂[47]。奥氏体和马氏体均对氢具有较强的限制能力,而铁素体却可以为H提供逃逸通道。铁素体与马氏体之间界面取向差较小,可以降低氢在相界面处的集中倾向,而奥氏体与马氏体之间的半共格Курдюмов-Sachs关系容易导致相界面形成位错缠结,加剧氢偏聚。此外,由于马氏体硬度峰和软化区的存在,A-M和M-F相界面两侧产生了明显的硬度差。在外加应力作用下,由硬度差产生的变形会导致应力集中,从而吸引氢聚集并增强氢脆的效果[61]。此外,De等[62]研究表明铁素体与马氏体之间的变形是相容的,而奥氏体却容易在变形中转变为新鲜马氏体,加剧A-M相界的应力集中。因此A-M相界的开裂敏感性高于M-F。
综上所述,虽然PMZ、马氏体、碳化物和贝氏体以及界面类型都对SSCC敏感性有影响,但由于形貌、尺寸、补氢能力等差异,各组织的影响程度存在差异。一般来说,含有宏观PMZ的熔合界面区域的敏感性最高,随后是马氏体/贝氏体组织,而碳化物因类型、尺寸、分布的不同,既可能促进SSCC又可能对SSCC起抑制作用,界面等对SSCC的影响也还存在分歧,需进一步探讨。但值得一提的是上述敏感组织对SSCC的影响一般均是以界面作为“桥梁”。大量研究证实界面的SSCC敏感性高于单相组织。例如Cao等[63]研究表明,界面处具有比基体更低的Volta电位,可能具有更高的氢敏感性。本课题[64]研究表明,在含有PMZ的熔合界面区域,裂纹优先出现在奥氏体(A)-马氏体(M)-铁素体(F)的三相交界处,并沿A-M界面扩展,而在马氏体内部并未观察到裂纹,主要原因是,(1)相间氢扩散速率的差异导致氢在界面大量堆积;(2)界面处原子键结合能低于单相组织且化学元素有差异,更容易在氢和腐蚀作用下萌生裂纹;(3)界面处存在元素偏析,易形成第二相成为裂纹萌生位点。
3.3 应力
应力是发生SSCC的必要条件。在SSCC产生过程中,应力的主要作用是使金属发生应变,产生滑移,促进SSCC裂纹形核、扩展直至断裂。异种金属焊接接头存在一定的焊接残余应力,可能对焊接接头的抗SSCC性能不利。Luo等[65]将焊接残余应力减小后,SSCC敏感性大幅度下降,因此有效地减少残余应力是焊接接头抗SSCC性能提升的重要措施。
图4
图4
微应变阈值与SSCC敏感性之间的关系[18]
Fig.4
Results of the SSCC tests with different micro-strain levels (× 10-6): (a) F22/Inconel 625, (b) 8630/Inconel 625. The “f” means that the tested samples were failed and separated, “c” means that the tested samples were cracked, and “p” means that the samples did not crack after the 5-d exposure[18]
综上所述,残余应力会提高焊接接头的SSCC敏感性,而外加应力会导致异种金属焊接接头接头内部位错浓度与氢浓度上升,同样使异种金属焊接接头的SSCC敏感性增加,最终造成裂纹萌生或加剧裂纹扩展。
3.4 焊接工艺及PWHT
合理的PWHT制度能够均匀化组织,降低焊接过程中的残余应力,提升焊接接头性能。Dai等[18]评估了不同的PWHT制度对F22/Inconel 625、8630/Inconel 625异种金属焊接接头SSCC的影响,结果表明PWHT可以提高F22/Inconel 625和8630/Inconel 625异种金属接头的抗SSCC能力,如图5所示。从应力-应变测试结果来看,F22/Inconel 625异种接头在未经PWHT的条件下,施加0.15%应变后断裂,而经过650℃ × 10 h的PWHT之后,抗脆断能力大幅提升;8630/Inconel 625异种接头在未经PWHT下,施加0.1%应变后断裂,而经过670℃ × 10 h的PWHT之后,施加0.15%应变后才断裂。如图6所示,Dodge等[68]评估了不同PWHT制度对F22/Inconel 625和8630/Inconel 625异种接头抗氢致开裂性能发现,PWHT能有效提高两种焊接接头的抗氢致开裂能力,但存在一个最佳的PWHT制度。在8630/Inconel 625焊接接头中,675℃ × 1 h的PWHT表现出最高的裂纹扩展阻力,而675℃ × 100 h的性能接近焊接状态,675℃ × 10 h PWHT的抗裂性能介于二者之间。在碳含量较低的F22/Inconel 625接头中,未经PWHT的接头呈现出最小的裂纹扩展阻力,而在650℃ × 10 h PWHT条件下表现出最大的裂纹扩展阻力,与上述结果相同的是,650℃ × 100 h PWHT导致裂纹扩展阻力降低至接近未经PWHT状态[17]。综上所述,合理的PWHT制度是提升异种金属焊接接头抗SSCC能力的关键手段。
图5
图6
不同异种金属焊接接头所对应的最优PHWT制度不同。Bourgeois等[4]研究了多次PWHT对F22/Inconel 625和8630/Inconel 625两种焊接接头SSCC行为的影响,表明经过650℃ × 10 h + 300℃ × 20 h PWHT后两种异种接头的SSCC敏感性都降低了。但经过650℃ × 10 h + 500℃ × 20 h PWHT的结果显示8630/Inconel 625接头中的SSCC敏感性增加,而F22/Inconel 625中的敏感性略有降低。
本课题组研究表明,620℃ × 6 h、620℃ × 10 h、620℃ × 20 h、650℃ × 6 h、650℃ × 10 h、650℃ × 20 h、670℃ × 6 h、670℃ × 10 h、670℃ × 20 h等多种PWHT制度中,仅有620℃ × 20 h的PWHT制度才能明显提升X80/Inconel 625的抗SSCC性能[19],热影响区和熔合界面均未发生明显开裂。因为该热处理条件下既能保证组织回火,又能保证焊接接头熔合界面两侧的强度差异不大。同时,微观组织得到优化,非搭接区的热影响区组织主要为铁素体和少量细小马氏体;而搭接区热影响区的组织主要为铁素体。
4 结论与展望
SSCC是油气田异种金属焊接接头的常见失效形式之一,主要发生于熔合界面区域。焊接方法、PWHT制度导致的微观组织结构变化对SSCC有显著影响。同时,在载荷和环境等外在影响因素方面也取得了一定的研究成果,但仍存在一些问题亟待解决。首先,在SSCC的机理方面,缺少腐蚀作用的定量研究。其次,在微观组织结构方面,碳化物、界面等对SSCC的影响还存在分歧,需进一步探讨。最后,温度、CO2等因素对SSCC的影响研究较少,各个因素及其交互作用尚不清楚。
参考文献
Quality analysis and control of key points in the manufacturing process of the subsea tree spool body
[J].
水下采油树本体制造过程关键点质量分析与控制
[J].
Effect of laser quenching on microstructure, corrosion and wear behavior of AISI 4130 steel
[J].
激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制
[J].
Influence of PWHT on the sulfide stress cracking susceptibility of 9%Ni low carbon steel
[J].The 9Ni steel low carbon steel is usually applied to pipes, pressure vessels and forged parts working at cryogenic temperatures, due to its high toughness at -196 degrees C and mechanical strength. Recently, this material was selected to facilities for storage and re-injection of CO2 gas in modern off shore oil and gas platforms. In this new application the steel may be subjected to high pressures in as environment with condensed water, CO2 and traces of H2S. The effect of such a harsh environment on the simulated heat affected zone (HAZ) was investigated by slow strain rate tensile (SSRT) tests. Two post weld heat treatments (PWHT) were reproduced, single tempering (ST) at 575 degrees C and double tempering (DT) at 670 degrees C (2 h) and 600 degrees C (2 h). Specimens without PWHT were more susceptible to sulfide stress cracking (SSC), while the single tempering at 575 degrees C decreased both the hardness and the SSC susceptibility. Double tempering also increased the resistance to SSC, but was not more effective than the single tempering. As general conclusion, PWHT is strongly recommended to 9Ni low carbon steels subjected to H2S containing environments.
Hydrogen assisted crack in dissimilar metal welds for subsea service under cathodic protection
[D].
Characterization of the interface of an alloy 625 overlay on steels using nanoindentation
[J].
Corrosion behavior and corrosion inhibition of dissimilar metal welds for X65 steel in CO2-containing environment
[J].
CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究
[J].研究了X65管线钢与316L不锈钢、Inconel 625双金属复合管的异种金属焊缝在CO<sub>2</sub>环境下的电偶腐蚀行为,以及油酸咪唑啉的缓蚀作用。结果表明,随着电偶电位差的增大,异种金属焊缝的腐蚀速率明显升高,并且都显著高于母材。添加油酸基咪唑啉缓蚀剂能降低异种金属焊缝在CO<sub>2</sub>环境下的均匀腐蚀速率。但是,当缓蚀剂浓度添加较低时,异种金属焊接试样的碳钢一侧出现了严重的沟槽腐蚀或密集的点蚀坑;进一步增加缓蚀剂浓度才能消除沟槽腐蚀现象。讨论了缓蚀剂对异种金属焊缝电偶腐蚀的抑制机理,该项研究可为异金属焊接接头处的腐蚀防护提供借鉴。
Microstructure and properties of dissimilar metal welded joints of low alloy steel and duplex stainless steel
[J].
低合金钢与双相不锈钢异种金属焊接接头组织和性能的研究
[J].
Research progress on hydrogen permeability behavior of pipeline steel
[J].
管线钢氢渗透行为的研究进展
[J].
Effect of HCO
HCO
Optimization design of lifting and repair scheme for fractured submarine pipeline and application
[J].
断裂海底管道起吊修复方案优化设计及应用
[J].
Stress corrosion cracking behavior of T95 oil well pipe steel in sour environment
[J].
T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制
[J].通过光学显微镜和透射电镜分析T95钢第二相及合金元素对材料抗应力腐蚀开裂 (SCC) 性能影响。在不同酸性pH值条件下,结合动电位极化方法、恒载荷拉伸以及显微镜微观分析等方法,研究了T95油井管钢的应力腐蚀行为,并探究了其裂纹发生机制。结果表明,T95钢的SCC行为对pH值敏感,在pH值2.8~4.5之间存在一个临界值,溶液pH值低至2.8及以下时T95钢的SCC敏感性高;腐蚀溶液pH值降低,应力环断裂时间缩短,T95钢SCC敏感性增加。随着溶液pH值降低,环境输入H<sup>+</sup>电流 (I<sub>H+</sub>) 增加,阴极反应加强,促进氢致开裂;H<sup>+</sup>在裂尖聚集,促进裂纹扩展,加强阳极溶解。T95钢的裂纹扩展受到阳极溶解和氢致开裂机制协同作用。
The corrosion failure behavior of welded MS X70 pipeline steel in H2S environment
[D].
MS X70管线钢焊接接头在硫化氢环境下腐蚀失效行为研究
[D].
Microstructure and hydrogen-induced failure mechanisms in Fe and Ni alloy weldments
[J].
Hydrogen induced mechanical property behavior of dissimilar weld metal interfaces
[A]. ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering [C].
Effect of post-weld heat treatment on microstructure evolution in dissimilar joints for subsea oil and gas systems
[J].
Effect of postweld heat treatment on the sulfide stress cracking of dissimilar welds of nickel-based alloy 625 on steels
[J].
Study on microstructure and SSCC of cold metal transition dissimilar metal welded joints
[D].
冷金属过渡异种金属焊接接头组织结构及SSCC研究
[D].
Environment-induced cracking in weld joints in subsea oil and gas systems: Part I
[A]. ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering [C].
Effect of postweld heat treatment on the properties of steel clad with alloy 625 for petrochemical applications
[D].
Prediction of heat-affected zone characteristics in submerged arc welding of structural steel pipes
[J].
Hydrogen embrittlement susceptibility and safety control of reheated CGHAZ in X80 welded pipeline
[J].
Effect of heat input on microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel
[J].
Effects of multiple welding thermal cycles on hydrogen permeation parameters of X80 steel
[J].
Microstructure transformation of X70 pipeline steel welding heat-affected zone
[J].
Weld overlay coating of Inconel 617 M on type 316 L stainless steel by cold metal transfer process
[J].
Sulphide stress cracking behaviour of the coarse-grained heat-affected zone in X100 pipeline steel under different heat inputs
[J].
Effects of environmental conditions on hydrogen permeation of X52 pipeline steel exposed to high H2S-containing solutions
[J].
The role of hydrogen in sulfide stress cracking of low alloy steels
[J].
Characteristics of sulfide stress corrosion cracking of high strength pipeline steel weld
[J].
Sulphide stress cracking behaviour of the dissimilar metal welded joint of X60 pipeline steel and Inconel 625 alloy
[J].
Quasi-four-dimensional analysis of dislocation interactions with grain boundaries in 304 stainless steel
[J].
Hydrogen effects on the character of dislocations in high-purity aluminum
[J].
Assessing the fatigue crack growth behavior of highly sensitized AA5456-H116 under cathodic polarization
[J].
Hydrogen embrittlement of high-strength API carbon steels in H2S and CO2 containing environments
[J].
Discussion of the history and relevance of the CO2/H2S Ratio
[A].
Recent experiences with cracking of load bearing dissimilar metal welds on subsea production systems
[A]. ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering [C].
Effect of temperature on resistance to hydrogen embrittlement of dissimilar metal welds subjected to SENB and SENT testing
[A]. ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering [C].
Use of existing steel pipeline infrastructure for gaseous hydrogen storage and transport: A review of factors affecting hydrogen induced degradation
[J].
Quantification of temperature dependence of hydrogen embrittlement in pipeline steel
[J].
Effect of microstructure on hydrogen induced cracking behavior of a high deformability pipeline steel
[J].
Combined thermal desorption spectroscopy, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction study of hydrogen trapping in cold deformed TRIP steel
[J].
Microstructure and sulfide stress corrosion cracking of the Inconel 625/X80 weld overlay fabricated by cold metal transfer process
[J].
Subsea dissimilar joints: failure mechanisms and opportunities for mitigation
[A].
The effect of heat treatment on the embrittlement of dissimilar welded joints
[D].
Study on sulfide stress corrosion cracking of nickel base 625/X80 bimetal composite pipe welding
[D].
镍基625/X80双金属复合管焊接熔合界面硫化物应力腐蚀开裂研究
[D].
Study on SSCC behavior of pipeline steel welded joints with nickel-based alloy weld
[J].
焊缝为镍基合金的管线钢焊接接头SSCC行为研究
[J].
Research development of corrosion of steels in CO2/H2S-containing media in oil & gas fields
[J].
在含CO2/H2S介质中油气田用钢的腐蚀研究进展
[J].
Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel
[J].
Hydrogen induced cracking of pipeline and pressure vessel steels: A review
[J].
Hydrogen-induced cracking susceptibility and hydrogen trapping efficiency of the welded MS X70 pipeline steel in H2S environment
[J].
MS X70酸性环境用管线钢焊接接头氢致开裂敏感性及氢捕获效率研究
[J].对MS X70管线钢母材及其焊接接头氢致开裂(HIC)敏感性进行了评估,利用OM、FE-SEM和EBSD对其显微组织、HIC裂纹及周围的晶界结构进行了观察和分析,并通过计算渗透通量J<sub>∞</sub>和氢有效扩散系数D<sub>eff</sub>对母材及焊接接头的氢捕获效率进行了研究。结果表明,MS X70管线钢母材及其焊接接头的HIC敏感性均不能达到欧标要求,且焊接接头比母材具有更高的HIC敏感性。焊接接头的HIC敏感性较高主要归结于:以条状贝氏体为主的焊缝组织对H原子的捕获效率高于母材;焊接接头中较多的作为H通道的小角度晶界可通过提高大角度晶界氢捕获效率从而增加其裂纹敏感率;焊接接头中较少量低能重位点阵(CSL)晶界和Σ13b、Σ29b重位晶界降低了大角度晶界裂纹扩展抗力从而使其具有更高的HIC敏感性。
Increased resistance to hydrogen embrittlement in high-strength steels composed of granular bainite
[J].
Effect of expanding ratio on strain capacity of X70 grade high deformability pipeline steel pipe
[J].Effect of expanding ratio on strain capacity of the trial X70 UOE pipeline steel pipe with polygonal ferrite and bainite (PF+B)was studied by optical microscope (OM), electron backscattered diffraction (EBSD), transmission electron microscope(TEM) and tensile test. The results show that when the expanding ratio varies in the range of 0.4%-1.2%, the grain orientation, effective grain size and proportion of high and low angle grain boundaries in the microstructure of pipe remain basically unchanged. With the increase of expanding ratio, the dislocation density in PF increases, resulting in a slight increase in yield strength and tensile strength. After UOE pipe made, the strain capacity index decreases from 2.00 of the original steel plate to 0.78, 0.61 and 0.56 of different expanding ratio, and the strain capacity decreases significantly. However, there is little effect on strain capacity of UOE pipe when the expanding ratio varies in the range of 0.4%-1.2%. The strain hardening rate first decreases and then increases before necking with the increase of expanding ratio, while the strain values corresponding to the necking points are 9.7%, 8.6% and 8.5% respectively. The strain hardening rate decreases rapidly when the expanding ratio reaches 1.2%.
扩径率对X70级大变形管线钢管变形能力的影响
[J].利用光学显微镜(OM)、电子背散射衍射(EBSD)、透射电镜(TEM)和力学性能分析手段研究了扩径率对X70级多边形铁素体+贝氏体(PF+B)组织的UOE试制管变形能力的影响。结果表明,扩径率在0.4%~1.2%范围变动时,钢管组织中的晶粒取向、有效晶粒尺寸和大、小角度晶界比例基本保持不变;随着扩径率增加,PF组织中位错密度增加,使得屈服强度和抗拉强度略有提高;钢板UOE制管后,变形能力指数由原始钢板的2.00分别下降到不同扩径率的0.78、0.61和0.56,变形能力显著下降;然而,0.4%~1.2%的扩径膨胀对钢管的变形能力影响较小;随扩径率增加,颈缩前钢管试样的应变硬化率先减小后增大,颈缩时的应变值分别为9.7%、8.6%和8.5%,扩径率为1.2%时,应变硬化率下降较快。
A new understanding of intergranular stress corrosion cracking resistance of pipeline steel through grain boundary character and crystallographic texture studies
[J].
Research on the fatigue properties of sub‐heat‐affected zones in X80 pipe
[J].
High cycle fatigue behaviors of API X65 pipeline steel welded joints in air and H2S solution environment
[J].
Nature and evolution of the fusion boundary in ferritic-austenitic dissimilar weld metals, Part Ⅰ-Nucleation and growth
[J].
Microstructure and stress corrosion cracking of the fusion boundary region in an alloy 182-A533B low alloy steel dissimilar weld joint
[J].
Hydrogen permeation parameters of X80 steel and welding HAZ under high pressure coal gas environment
[J].Hydrogen gas is usually included in coal gas environment, so hydrogen induced permeation would happen to pipeline, especially in welding heat affected zone (HAZ). Hydrogen permeation process in pipeline is the preconditions for the following hydrogen embrittlement failure. With the development of coal gas industry, the basic research to the hydrogen permeation behavior in pipeline under coal gas circumstance is still unfortunately lack and urgently needed to supplement. In this work, X80 pipeline steel was used, and the HAZ samples, including intercritical heat affected zone (ICHAZ), fine grained heat affected zone (FGHAZ) and coarse grained heat affected zone (CGHAZ), were experimentally simulated using a Gleeble 3500 simulator. Next, hydrogen permeation tests were conducted on X80 pipeline steel and HAZs in coal gas environment. Calculated results indicated that the hydrogen diffusion coefficient increased with the rise of peak temperature in HAZs, but it was opposite to other parameters, such as sub-surface hydrogen concentration, hydrogen solubility and hydrogen trap density. The mechanism of the difference in HAZ hydrogen permeation parameters was analyzed combined with OM, EBSD and TEM analysis. It turned out that the content of large-angle grain boundaries, the grain boundary straightness and dislocation density were the main factors, where the large-angle grain boundaries and dislocations could dramatically arrest hydrogen atoms while the straight grain boundaries may act as hydrogen diffusion path. For FGHAZ, the straight grain boundary and low dislocation density compared with matrix played the predominant role in hydrogen diffusion process, and thus the hydrogen diffusion coefficient increased compared with steel substrate. For ICHAZ and CGHAZ, the decrease of large-angle grain boundaries and dislocation density acted as the main factor, especially for CGHAZ, the microstructures was mainly composed of tabular bainite ferrite (BF) with large grain size and straight grain boundaries because of the highest peak temperature, and the content of large-angle grain boundaries decreased obviously. In comparation with other regions, CGHAZ had the highest hydrogen diffusion coefficient and the lowest hydrogen trap density and hydrogen solubility.
高压煤制气环境下X80钢及热影响区的氢渗透参数研究
[J].
Effect of microstructure inhomogeneity on hydrogen embrittlement susceptibility of X80 welding HAZ under pressurized gaseous hydrogen
[J].
Effect of fresh martensite on the stability of retained austenite in quenching and partitioning steel
[J].
Coupling effect of microstructure and hydrogen absorbed during service on pitting corrosion of 321 austenitic stainless steel weld joints
[J].
Insights into the role of partially mixed zones in sulfide stress corrosion cracking of the inconel 625/X80 weld overlay
[J].
A study on microstructure, residual stresses and stress corrosion cracking of repair welding on 304 stainless steel: Part I-effects of heat input
[J].
Effects of chromium and tungsten on sulfide stress cracking in high strength low alloy 125 ksi grade casing steel
[J].
Assessing the effects of the welding processes on the environmental strength of an multi-pass welded A106 Gr B steel pipe
[A].
Environment-induced cracking in weld joints in subsea oil and gas systems: Part II
[A]. ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering [C].
/
〈 |
|
〉 |
