Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (5): 992-1002     CSTR: 32134.14.1005.4537.2022.307      DOI: 10.11902/1005.4537.2022.307
  研究报告 本期目录 | 过刊浏览 |
CeO2@MWCNTs/EP复合涂层的制备与性能研究
轩星雨, 屈少鹏(), 赵行娅
上海海事大学海洋科学与工程学院 上海 201306
Preparation and Performance of CeO2@MWCNTs/EP Composite Coatings
XUAN Xingyu, QU Shaopeng(), ZHAO Xingya
College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
全文: PDF(19882 KB)   HTML
摘要: 

在X80钢上制备了CeO2@MWCNTs改性的环氧复合涂层 (CeO2@MWCNTs/EP),研究了复合涂层的腐蚀行为和摩擦学性能。利用扫描电子显微镜(SEM)、透射电子显微镜 (TEM) 和白光干涉仪对其形貌进行表征,利用能谱仪 (EDS)、X射线光电子能谱仪 (XPS)、红外光谱 (FT-IR) 等分析其化学成分和结构,采用接触角计和显微维氏硬度计分别对复合涂层的润湿性和硬度进行测试。结果显示,CeO2与MWCNTs之间发生物理吸附,纳米CeO2可以改变EP的结构;CeO2@MWCNTs有利于减少CeO2@MWCNTs/EP复合涂层中的微孔,而当CeO2@MWCNTs含量达到1.0%时,则发生团聚;CeO2@MWCNTs不发生团聚时,可以提高复合涂层的耐蚀性,否则效果相反;随着CeO2@MWCNTs含量增加,复合涂层的耐蚀性先提高后降低,当CeO2@MWCNTs含量为0.5%时,复合涂层的腐蚀电流密度最小,与EP涂层相比降低了一个数量级;CeO2@MWCNTs具有润滑功能,随着CeO2@MWCNTs含量的增加,复合涂层的摩擦系数和磨损率呈下降趋势,1.0% CeO2@MWCNTs/EP复合涂层的磨损率比EP涂层下降了64.7%。

关键词 涂层环氧树脂CeO2@MWCNTs腐蚀摩擦磨损    
Abstract

Epoxy composite coatings with different contents of cerium salt treated multi-walled carbon nanotubes (CeO2@MWCNTs) were prepared on X80 steel. The corrosion behavior and tribological property of the composite coatings were studied. Meanwhile, the morphology, chemical composition and structure, as well as wettability and hardness of CeO2@MWCNTs/EP composite coating were characterized by means of SEM, TEM and white light interferometer, EDS, XPS and FT-IR, contact angle meter and microhardness tester etc. The results show that there exist physical adsorption for the interface between nano-CeO2 and MWCNTs in the prepared powder of CeO2@MWCNTs, while the structure of epoxy can be changed due to the introduction of nano-CeO2 particulates. CeO2@MWCNTs is beneficial to reduce the micropores in the CeO2@MWCNTs/EP composite coating, but the powders may agglomerate when the dosage reaches to 1.0%. It should be noted that CeO2@MWCNTs in dispersive state can improve the corrosion resistance of the composite coating, but in agglomerated state which presents negative effect. The corrosion resistance of CeO2@MWCNTs/EP composite coating first increases and then decrease with the increase of CeO2@MWCNTs content, and among others, the corrosion current density of the coating with 0.5% CeO2@MWCNTs/EP is the smallest, which is an order of magnitude less than that of the simple EP coating. CeO2@MWCNTs possesses lubricating function, therefore, the friction coefficient and wear rate of the composite coating show a decreasing trend with the increasing CeO2@MWCNTs content. The wear rate of 1.0% CeO2@MWCNTs/EP composite coating decreases by 64.7% in comparison with the simple EP coating.

Key wordscoating    epoxy    CeO2@MWCNTs    corrosion    friction and wear
收稿日期: 2022-10-08      32134.14.1005.4537.2022.307
ZTFLH:  TB332  
基金资助:国家自然科学基金(51701115);中国科学院海洋新材料与应用技术重点实验室开放基金(2016K04)
通讯作者: 屈少鹏,E-mail: spqu@shmtu.edu.cn,研究方向为金属材料及其腐蚀与防护   
Corresponding author: QU Shaopeng, E-mail: spqu@shmtu.edu.cn   
作者简介: 轩星雨,男,1996年生,硕士生

引用本文:

轩星雨, 屈少鹏, 赵行娅. CeO2@MWCNTs/EP复合涂层的制备与性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
XUAN Xingyu, QU Shaopeng, ZHAO Xingya. Preparation and Performance of CeO2@MWCNTs/EP Composite Coatings. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 992-1002.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.307      或      https://www.jcscp.org/CN/Y2023/V43/I5/992

图1  MWCNTs与CeO2@MWCNTs的微观形貌和能谱结果
图2  MWCNTs与CeO2@MWCNTs的TEM分析结果
图3  CeO2@MWCNTs的XPS谱
图4  不同CeO2@MWCNTs含量的CeO2@MWCNTs/EP复合涂层的微观形貌
图5  不同CeO2@MWCNTs含量的CeO2@MWCNTs/EP复合涂层断面Ce的 EDS
图6  MWCNTs, CeO2@MWCNTs以及不同CeO2@- MWCNTs含量的CeO2@MWCNTs/EP复合涂层的FT-IR光谱
图7  不同CeO2@MWCNTs含量的CeO2@MWCNTs/EP复合涂层的接触角测试结果
图8  不同CeO2@MWCNTs含量的CeO2@MWCNTs/EP复合涂层的电化学阻抗谱及其等效电路
Sample

Rs

Ω·cm2

CPE2

R2

Ω·cm2

CPE1

R1

Ω·cm2

CPE3

Rt

Ω·cm2

Error
Y0S·s n ·cm-2nY0S·s n ·cm-2nY0S·s n ·cm-2n
EP8.939.45×10-90.880.45×1031.39×10-80.922.43×1041.72×10-60.672.54×1055.69%
0.1% CeO2@MWCNTs/EP8.121.43×10-90.930.74×1032.42×10-90.910.92×1052.39×10-70.632.66×1066.47%
0.5% CeO2@MWCNTs/EP8.371.58×10-60.811.16×1033.49×10-100.972.94×1056.42×10-70.453.54×1064.08%
1.0% CeO2@MWCNTs/EP8.761.72×10-60.841.59×1032.41×10-90.934.78×1048.38×10-70.575.62×1057.92%
表1  不同CeO2@MWCNTs含量的CeO2@MWCNTs/EP复合涂层的EIS拟合结果
图9  不同CeO2@MWCNTs含量的CeO2@MWCNTs/EP复合涂层的孔隙率变化与动电位极化曲线
SampleEcorr / VIcorr / µA·cm-2
EP-0.5070.187
0.1% CeO2@MWCNTs/EP-0.4930.018
0.5% CeO2@MWCNTs/EP-0.4030.013
1.0% CeO2@MWCNTs/EP-0.4990.041
表2  不同CeO2@MWCNTs含量的CeO2@MWCNTs/EP复合涂层的拟合电化学参数
图10  不同CeO2@MWCNTs含量的CeO2@MWCNTs/EP复合涂层的维氏硬度
图11  不同CeO2@MWCNTs含量的CeO2@MWCNTs/EP复合涂层的摩擦磨损结果
图12  不同CeO2@MWCNTs含量的CeO2@MWCNTs/EP复合涂层腐蚀机理示意图
1 Liu C, Bhole S D. Challenges and developments in pipeline weldability and mechanical properties [J]. Sci. Technol. Weld. Join., 2013, 18: 169
doi: 10.1179/1362171812Y.0000000090
2 Wang P Y, Wang J, Zheng S Q, et al. Effect of H2S/CO2 partial pressure ratio on the tensile properties of X80 pipeline steel [J]. Int. J. Hydro. Energy, 2015, 40: 11925
doi: 10.1016/j.ijhydene.2015.04.114
3 Ballesteros A F, Gomes J A P, Bott I S. Corrosion evaluation of SAW welded API 5L X-80 joints in H2S-containing solution [J]. Mat. Res., 2015, 18: 417
doi: 10.1590/1516-1439.368714
4 Teng L, Chen X. Research progress of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 531
4 滕 琳, 陈 旭. 海洋环境中金属电偶腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 531
5 Sørensen P A, Kiil S, Dam-Johansen K, et al. Anticorrosive coatings: a review [J]. J. Coat. Technol. Res., 2009, 6: 135
doi: 10.1007/s11998-008-9144-2
6 Sari M G, Shamshiri M, Ramezanzadeh B. Fabricating an epoxy composite coating with enhanced corrosion resistance through impregnation of functionalized graphene oxide-co-montmorillonite Nanoplatelet [J]. Corros. Sci., 2017, 129: 38
doi: 10.1016/j.corsci.2017.09.024
7 Othman N H, Yahya W Z N, Ismail M C, et al. Highly dispersed graphene oxide-zinc oxide nanohybrids in epoxy coating with improved water barrier properties and corrosion resistance [J]. J. Coat. Technol. Res., 2020, 17: 101
doi: 10.1007/s11998-019-00245-y
8 Ramezanzadeh B, Niroumandrad S, Ahmadi A, et al. Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide [J]. Corros. Sci., 2016, 103: 283
doi: 10.1016/j.corsci.2015.11.033
9 Matin E, Attar M M, Ramezanzadeh B. Investigation of corrosion protection properties of an epoxy nanocomposite loaded with polysiloxane surface modified nanosilica particles on the steel substrate [J]. Prog. Org. Coat., 2015, 78: 395
10 Liu J H, Yu Q, Yu M, et al. Silane modification of titanium dioxide-decorated graphene oxide nanocomposite for enhancing anticorrosion performance of epoxy coatings on AA-2024 [J]. J. Alloy. Compd., 2018, 744: 728
doi: 10.1016/j.jallcom.2018.01.267
11 Li X J, Hui H H, Zhao J W, et al. Effect of MWCNTs content on corrosion resistance of chromium-free zinc-aluminum coatings [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 324
11 李旭嘉, 惠红海, 赵君文 等. 多壁碳纳米管含量对无铬锌铝涂层耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 324
doi: 10.11902/1005.4537.2021.054
12 Pourhashem S, Ghasemy E, Rashidi A, et al. A review on application of carbon nanostructures as nanofiller in corrosion-resistant organic coatings [J]. J. Coat. Technol. Res., 2020, 17: 19
doi: 10.1007/s11998-019-00275-6
13 Deyab M A, Keera S T. Effect of nano-TiO2 particles size on the corrosion resistance of alkyd coating [J]. Mater. Chem. Phys., 2014, 146: 406
doi: 10.1016/j.matchemphys.2014.03.045
14 Dhoke S K, Khanna A S, Sinha T J M. Effect of nano-ZnO particles on the corrosion behavior of alkyd-based waterborne coatings [J]. Prog. Org. Coat., 2009, 64: 371
doi: 10.1016/j.porgcoat.2008.07.023
15 Zuo M, Wu T T, Xu K G, et al. Sol-gel route to ceria coatings on AA2024-T3 aluminum alloy [J]. J. Coat. Technol. Res., 2015, 12: 75
doi: 10.1007/s11998-014-9621-8
16 Cai G Y, Wang H W, Zhao W H, et al. Effect of nano-CeO2 on anticorrosion performance for polyurethane coating [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 411
16 蔡光义, 王浩伟, 赵苇杭 等. 添加纳米CeO2对聚氨酯涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 411
doi: 10.11902/1005.4537.2016.147
17 Fedel M, Ahniyaz A, Ecco L G, et al. Electrochemical investigation of the inhibition effect of CeO2 nanoparticles on the corrosion of mild steel [J]. Electrochim. Acta, 2014, 131: 71
doi: 10.1016/j.electacta.2013.11.164
18 Xavier J R. Investigation on the effect of nano-ceria on the epoxy coatings for corrosion protection of mild steel in natural seawater [J]. Anti-Corros. Method Mater., 2018, 65: 38
doi: 10.1108/ACMM-04-2017-1784
19 Ma P C, Siddiqui N A, Marom G, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review [J]. Composites, 2010, 41A: 1345
20 Wang S H, Duan H F, Ma G Z, et al. Epoxy functionalization of multiwalled carbon nanotubes for their waterborne polyurethane composite with crosslinked structure [J]. J. Coat. Technol. Res., 2020, 17: 91
doi: 10.1007/s11998-019-00242-1
21 Mu C Z, Zhang L Y, Song Y J, et al. Modification of carbon nanotubes by a novel biomimetic approach towards the enhancement of the mechanical properties of polyurethane [J]. Polymer, 2016, 92: 231
doi: 10.1016/j.polymer.2016.03.085
22 Cui M J, Ren S M, Qiu S H, et al. Non-covalent functionalized multi-wall carbon nanotubes filled epoxy composites: Effect on corrosion protection and tribological performance [J]. Surf. Coat. Technol., 2018, 340: 74
doi: 10.1016/j.surfcoat.2018.02.045
23 Khun N W, Troconis B C R, Frankel G S. Effects of carbon nanotube content on adhesion strength and wear and corrosion resistance of epoxy composite coatings on AA2024-T3 [J]. Prog. Org. Coat., 2014, 77: 72
24 Shibe V, Chawla V. Erosion studies of cermet-coated ASTM A36 steel [J]. Ind. Lubr. Tribol., 2019, 71: 242
doi: 10.1108/ILT-01-2018-0001
25 Ma L W, Wang X B, Wang J K, et al. Graphene oxide–cerium oxide hybrids for enhancement of mechanical properties and corrosion resistance of epoxy coatings [J]. J. Mater. Sci., 2021, 56: 10108
doi: 10.1007/s10853-021-05932-z
26 Paparazzo E, Ingo G M, Zacchetti N. X-ray induced reduction effects at CeO2 surfaces: an X-ray photoelectron spectroscopy study [J]. J. Vac. Sci. Technol., 1991, 9A: 1416
27 Živković L S, Jegdić B V, Andrić V, et al. The effect of ceria and zirconia nanoparticles on the corrosion behaviour of cataphoretic epoxy coatings on AA6060 alloy [J]. Prog. Org. Coat., 2019, 136: 105219
28 William W S. The Sadtler Handbook of Infrared Spectra [M]. Philadelphia, America: Sadtler Research Laboratories, 1978
29 Montemor M F, Simões A M, Ferreira M G S, et al. Composition and corrosion resistance of cerium conversion films on the AZ31 magnesium alloy and its relation to the salt anion [J]. Appl. Surf. Sci., 2008, 254: 1806
doi: 10.1016/j.apsusc.2007.07.187
30 Zhang L S, Jiang Y, Zai W, et al. Fabrication of superhydrophobic calcium phosphate coating on Mg-Zn-Ca alloy and its corrosion resistance [J]. J. Mater. Eng. Perform., 2017, 26: 6117
doi: 10.1007/s11665-017-2994-y
31 Brug G J, Van Den Eeden A L G, Sluyters-Rehbach M, et al. The analysis of electrode impedances complicated by the presence of a constant phase element [J]. J. Electroanal. Chem. Interfacial Electrochem., 1984, 176: 275
doi: 10.1016/S0022-0728(84)80324-1
32 Xu Y X, Yan C W, Ding J, et al. UV photo-degradation of coatings [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 168
32 徐永祥, 严川伟, 丁 杰 等. 紫外光对涂层的老化作用 [J]. 中国腐蚀与防护学报, 2004, 24: 168
33 Ding R, Gui T J, Jiang J M, et al. Electrochemical impedance spectroscopy study of corrosion behavior of solvent-free epoxy coatings on steel substrate [J]. Chin. J. Vac. Sci. Technol., 2017, 37: 165
33 丁 锐, 桂泰江, 蒋建明 等. 应用EIS研究改性无溶剂环氧防腐涂层的防护性能和腐蚀特征 [J]. 真空科学与技术学报, 2017, 37: 165
34 Min C Y, He Z B, Song H J, et al. Fabrication of novel CeO2/GO/CNTs ternary nanocomposites with enhanced tribological performance [J]. Appl. Sci., 2019, 9: 170
doi: 10.3390/app9010170
[1] 肖文涛, 刘静, 彭晶晶, 张弦, 吴开明. 两种电弧喷涂涂层在中性盐雾环境下的耐蚀性能对比研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[2] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[3] 姚勇, 刘国军, 黎石竹, 刘淼然, 陈川, 黄廷城, 林海, 李展江, 刘雨薇, 王振尧. 金属材料腐蚀预测模型研究进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 983-991.
[4] 石践, 胡学文, 何博, 浦红, 郭锐, 汪飞. 经济型高耐候钢耐大气腐蚀性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1159-1164.
[5] 胡杰珍, 蓝文杰, 邓培昌, 吴敬权, 曾俊昊. E690钢在热带海洋大气环境下的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1140-1144.
[6] 李佳媛, 曾天昊, 刘友通, 吴晓春. 加铜4Cr16Mo马氏体不锈钢在应力作用下的腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[7] 顾玉慧, 董亮, 宋沁峰. 微型金属氧化物pH电极的制备及腐蚀防护应用进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[8] 罗维华, 王海涛, 于林, 许实, 刘朝信, 郭宇, 王廷勇. Zn含量对Al-Zn-In-Mg牺牲阳极电化学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[9] 李田雨, 王维康, 李扬涛, 包腾飞, 赵梦凡, 沈欣欣, 倪磊, 马庆磊, 田惠文. 超高性能海水海砂混凝土的硫酸盐腐蚀破坏机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[10] 周浩, 尤世界, 王胜利. 铜质文物在CO2 环境中的腐蚀行为及缓蚀剂研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[11] 高秋英, 曾文广, 王恒, 刘元聪, 扈俊颖. 流体冲刷作用对SRB的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[12] 陈震宇, 朱忠亮, 马辰昊, 张乃强, 刘宇桐. 加载条件对镍基617合金在超临界水中腐蚀疲劳裂纹扩展速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1057-1063.
[13] 李海燕, 刘欢, 王阁义, 张秀菊, 陈同舟, 俞云, 姚洪. 锅炉受热面的冲蚀磨损与防护综述[J]. 中国腐蚀与防护学报, 2023, 43(5): 957-970.
[14] 汪洋, 刘元海, 慕仙莲, 刘淼然, 王俊, 李秋平, 陈川. 海洋气候大气腐蚀过程环境因素对薄液膜内物质传递的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.
[15] 李忠诚, 陈圣刚, 郭全全, 郭俊营. 基于COMSOL的核电站安全壳钢衬里外侧腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1133-1139.