Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (4): 821-827     CSTR: 32134.14.1005.4537.2022.287      DOI: 10.11902/1005.4537.2022.287
  曹楚南科教基金优秀论文专栏 本期目录 | 过刊浏览 |
飞机燃油系统微生物污染主动防治涂层研究进展
戚震辉, 江涛, 赵茂锦, 蔡钟琪, 王瑞晨, 尚洁, 姚纪政, 葛岩()
西北工业大学生命学院 陕西省柔性电子与健康科学国际联合研究中心 中德空间生物材料与技术转化联合实验室 西安 710072
Research Progress on Coatings of Active Control of Microbiological Contamination for Aircraft Fuel System
QI Zhenhui, JIANG Tao, ZHAO Maojin, CAI Zhongqi, WANG Ruichen, SHANG Jie, YAO Jizheng, GE Yan()
Sino-German Joint Research Lab of Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Science of Shaanxi Province, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(1691 KB)   HTML
摘要: 

基于航空事业对燃油系统微生物防治的的迫切需求,针对“燃油系统内部积水带来的微生物污染”的关键问题,将生物-材料-电子进行多学科交叉融合,拟以微生物胞外电子传递这一广泛存在的生物现象为切入点,围绕“水带来的微生物污染”与“新材料涂层如何主动杀菌”的关系进行探究,旨在建立安全高效的燃油系统微生物防治策略以保障飞机安全运行,利用微生物胞外电子传递作为电子来源,成为微电池涂层抑菌和生成ROS的关键,综述如何利用金属腐蚀电化学提供“主动”抗菌功能性涂层的设计原理和重要实验指导,同时也为其他涉及燃油系统微生物防治的研究提供新思路、开拓新途径。

关键词 飞机燃油系统微生物污染腐蚀微电池胞外电子传递    
Abstract

Owing to the urgent need of aviation industry for microbial control of the fuel system of aircraft, it is imperative to establish a safe and efficient microbial control strategy for the fuel system to ensure the safe operation of aircraft. Water is generally considered to be an undesirable substance in the fuel system, which may lead to microbial contamination. The novel antibacterial strategies that can turn water into things of value with high disinfection efficiency have been urgently needed for the fuel system. This review surveys the edged technologies which may provide the design principle and important experimental guidance of "active" antibacterial functional coating. Accordingly, two electron sources include the extracellular electron transfer and the galvanic corrosion on the coated metals may become the key to spontaneous microbial-control coating.

Key wordsaircraft fuel system    microbial contamination    corrosion    micro-galvanic effect    extracellular electron transfer
收稿日期: 2022-09-16      32134.14.1005.4537.2022.287
ZTFLH:  TG174  
基金资助:国家自然科学基金(22071196);国家自然科学基金(52001255);国家自然科学基金(22007078);陕西省重点研发计划(2021KWZ-18);航空科学基金(ASFC-2020Z061053001)
通讯作者: 葛岩,E-mail: ge@nwpu.edu.cn,研究方向为生物、材料、电化学多学科交叉研究   
Corresponding author: GE Yan, E-mail: ge@nwpu.edu.cn   
作者简介: 戚震辉,男,1983年生,教授,西北工业大学教授,博士生导师,国家级高层次青年人才,西北工业大学翱翔青年,陕西省柔性电子与健康科学国际联合研究中心副主任,全国空间科学及其应用标准化技术委员,全国腐蚀电化学及测试方法专业委员会委员,《Chinese Chemical Letters》杂志编委、《Journal of Polymer Science》杂志编委,教育部学位与研究生教育发展中心学科评估专家。获德国Charité 基金会医疗健康领域Research to Market Challenge二等奖。主持国家自然基金、留学基金委创新型人才培养项目、陕西省重点研发计划、航空基金等16项科研及人才培养项目。以“生物电子”效应为研究基础,利用生物体与材料表面的电子传递效应,开发新型微电池涂层技术应用于军用飞机、空间站、医疗设备等涉及国家国防与民生多个重要领域。

引用本文:

戚震辉, 江涛, 赵茂锦, 蔡钟琪, 王瑞晨, 尚洁, 姚纪政, 葛岩. 飞机燃油系统微生物污染主动防治涂层研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 821-827.
QI Zhenhui, JIANG Tao, ZHAO Maojin, CAI Zhongqi, WANG Ruichen, SHANG Jie, YAO Jizheng, GE Yan. Research Progress on Coatings of Active Control of Microbiological Contamination for Aircraft Fuel System. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 821-827.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.287      或      https://www.jcscp.org/CN/Y2023/V43/I4/821

图1  金属微电池抗菌改性层设计原理示意图[53]
1 Zhao A J, Shi G S, Han X. Research on fuel microbial contamination of military aircraft [J]. Aircraft Des., 2017, 37 (5): 48
1 赵安家, 施广生, 韩 笑. 军机燃油微生物污染的研究 [J]. 飞机设计, 2017, 37(5): 48
2 Li Z H, Zhang Z C, Ding L, et al. Microbial contamination and corrosion in aircraft fuel system [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1081
2 李征鸿, 张志超, 丁 磊 等. 飞机燃油系统的微生物污染与腐蚀 [J]. 中国腐蚀与防护学报, 2022, 42: 1081
doi: 10.11902/1005.4537.2021.329
3 Hu D, Zeng J, Wu S S, et al. A survey of microbial contamination in aviation fuel from aircraft fuel tanks [J]. Folia Microbiol., 2020, 65: 371
doi: 10.1007/s12223-019-00744-w pmid: 31392506
4 Baena-Zambrana S, Repetto S L, Lawson C P, et al. Behaviour of water in jet fuel - A literature review [J]. Prog. Aerosp. Sci., 2013, 60: 35
doi: 10.1016/j.paerosci.2012.12.001
5 Ma K J, Wang M M, Shi Z L, et al. Influence of temperature on microbial induced corrosion of tank bottom for crude oil storage [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1051
5 马凯军, 王萌萌, 史振龙 等. 温度对原油储罐罐底微生物腐蚀影响规律的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1051
doi: 10.11902/1005.4537.2021.273
6 Jia Q Y, Wang B, Wang Y, et al. Corrosion behavior of X65 pipeline steel at oil-water interface region in hyperbaric CO2 environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 230
6 贾巧燕, 王 贝, 王 赟 等. X65管线钢在油水两相界面处的CO2腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 230
doi: 10.11902/1005.4537.2019.056
7 Standard test method for adenosine triphosphate (ATP) content of microorganisms in fuel, fuel/water mixtures and fuel associated water [S]. ASTM International, 2008
8 He Y J, Zhang T S, Wang H T, et al. Research progress of biocides for microbiologically influenced corrosion [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 748
8 何勇君, 张天遂, 王海涛 等. 微生物腐蚀杀菌剂研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 748
doi: 10.11902/1005.4537.2020.167
9 Zhu H L, Lu X M, Li X F, et al. Synthesis, corrosion inhibition and bactericidal performance of an ammonium salt surfactant containing thiadiazole [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 51
9 朱海林, 陆小猛, 李晓芬 等. 含噻二唑季铵盐表面活性剂的合成及缓蚀杀菌性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 51
doi: 10.11902/1005.4537.2021.082
10 Panáček A, Kvítek L, Smékalová M, et al. Bacterial resistance to silver nanoparticles and how to overcome it [J]. Nat. Nanotechnol., 2018, 13: 65
doi: 10.1038/s41565-017-0013-y pmid: 29203912
11 Hu D Z, Han J, Zhang R, et al. Control of microbial contamination in aircraft fuel system [J]. Adv. Microbiol., 2018, 7: 131
doi: 10.12677/AMB.2018.74016
12 Raikos V, Vamvakas S S, Sevastos D, et al. Water content, temperature and biocide effects on the growth kinetics of bacteria isolated from JP-8 aviation fuel storage tanks [J]. Fuel, 2012, 93: 559
doi: 10.1016/j.fuel.2011.10.028
13 Li Y. China issued the relevant standards for oil supply engineering of civil transport airports [J]. China Plant Eng., 2017, (5): 6
13 李 阳. 我国发布民用运输机场供油工程相关标准 [J]. 中国设备工程, 2017, (5): 6
14 Liu J, Geng Y J, Li S C, et al. Protection efficacy of TEOS/IBTS coating on microbial fouling of concrete in marine tidal areas [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 135
14 刘 珺, 耿永娟, 李绍纯 等. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究 [J]. 中国腐蚀与防护学报, 2022, 42: 135
15 Cai S, Zhang S, Ni Y W, et al. Study on antibacterial performance of antistatic and antibacterial corrosion protective coatings for linings of fuel storage tanks [J]. Paint Coat. Ind., 2012, 42(10): 25
15 蔡 森, 张 松, 倪余伟 等. 油舱内壁防霉导静电防腐蚀涂料抗菌性能研究 [J]. 涂料工业, 2012, 42(10): 25
16 Zhao X, Zhu J J, Li M, et al. Domestic application and development status of anti-bacterial agent [J]. Mater. Rep., 2016, 30(7): 68
16 赵 欣, 朱健健, 李 梦 等. 我国抗菌剂的应用与发展现状 [J]. 材料导报, 2016, 30(7): 68
17 Rizzello L, Pompa P P. Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines [J]. Chem. Soc. Rev., 2014, 43: 1501
doi: 10.1039/c3cs60218d pmid: 24292075
18 Azzam E M S, Sami R M, Kandile N G. Activity inhibition of sulfate reducing bacteria using some cationic thiol surfactants and their nanostructures [J]. Am. J. Biochem., 2012, 2: 29
doi: 10.5923/j.ajb.20120203.03
19 Cao H L, Liu X Y, Meng F H, et al. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects [J]. Biomaterials, 2011, 32: 693
doi: 10.1016/j.biomaterials.2010.09.066 pmid: 20970183
20 Ponomarev V A, Sukhorukova I V, Sheveyko A N, et al. Antibacterial performance of TiCaPCON films incorporated with Ag, Pt, and Zn: bactericidal ions versus surface microgalvanic interactions [J]. ACS Appl. Mater. Interfaces, 2018, 10: 24406
doi: 10.1021/acsami.8b06671
21 Cao H L, Tang K W, Liu X Y. Bifunctional galvanics mediated selective toxicity on titanium [J]. Mater. Horiz., 2018, 5: 264
doi: 10.1039/C7MH00884H
22 Feng J W, Yang Z, Yang K, et al. Influence of 317L-Cu antibacterial stainless steel on biological behavior of fibroblasts in mice [J]. J. China Med. Univ., 2022, 51: 59
22 冯靖雯, 杨 泽, 杨 柯 等. 317L-Cu抗菌不锈钢对小鼠成纤维细胞生物学行为的影响 [J]. 中国医科大学学报, 2022, 51: 59
23 Zhang Y X, Chen C Y, Liu H W, et al. Research progress on mildew induced corrosion of Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 13
23 张雨轩, 陈翠颖, 刘宏伟 等. 铝合金霉菌腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 13
doi: 10.11902/1005.4537.2020.034
24 Vatansever F, De Melo W C M A, Avci P, et al. Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy, and beyond [J]. FEMS Microbiol. Rev., 2013, 37: 955
doi: 10.1111/1574-6976.12026 pmid: 23802986
25 Hodges B C, Cates E L, Kim J H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials [J]. Nat. Nanotechnol., 2018, 13: 642
doi: 10.1038/s41565-018-0216-x pmid: 30082806
26 Xie M S, Dai F F, Li J, et al. Tailoring the electronic metal-support interactions in supported atomically dispersed gold catalysts for efficient Fenton-like reaction [J]. Angew. Chem., Int. Ed., 2021, 60: 14370
doi: 10.1002/anie.v60.26
27 Yu Y D, Lu L X, Yang Q, et al. Using MoS2 nanomaterials to generate or remove reactive oxygen species: A review [J]. ACS Appl. Nano Mater., 2021, 4: 7523
doi: 10.1021/acsanm.1c00751
28 Song C L, Zhan Q, Liu F, et al. Overturned loading of inert CeO2 to active Co3O4 for unusually improved catalytic activity in Fenton-like reactions [J]. Angew. Chem., Int. Ed., 2022, 61: e202200406
29 Ono Y, Matsumura T, Kitajima N, et al. Formation of superoxide ion during the decomposition of hydrogen peroxide on supported metals [J]. J. Phys. Chem., 1977, 81: 1307
doi: 10.1021/j100528a018
30 Siahrostami S, Villegas S J, Bagherzadeh Mostaghimi A H, et al. A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen peroxide [J]. ACS Catal., 2020, 10: 7495
doi: 10.1021/acscatal.0c01641
31 Zhang J M, Ma J, Choksi T S, et al. Strong metal-support interaction boosts activity, selectivity, and stability in electrosynthesis of H2O2 [J]. J. Am. Chem. Soc., 2022, 144: 2255
doi: 10.1021/jacs.1c12157
32 Wang M J, Dong X, Meng Z D, et al. An efficient interfacial synthesis of two-dimensional metal-organic framework nanosheets for electrochemical hydrogen peroxide production [J]. Angew. Chem., Int. Ed., 2021, 60: 11190
doi: 10.1002/anie.v60.20
33 Jiang Y Y, Ni P J, Chen C X, et al. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry [J]. Adv. Energy Mater., 2018, 8: 1801909
doi: 10.1002/aenm.v8.31
34 Rodriguez P, Koper M T M. Electrocatalysis on gold [J]. Phys. Chem. Chem. Phys., 2014, 16: 13583
doi: 10.1039/c4cp00394b pmid: 24728379
35 Blizanac B B, Ross P N, Markovic N M. Oxygen electroreduction on Ag (111) : The pH effect [J]. Electrochim. Acta, 2007, 52: 2264
doi: 10.1016/j.electacta.2006.06.047
36 Siahrostami S, Verdaguer-Casadevall A, Karamad M, et al. Enabling direct H2O2 production through rational electrocatalyst design [J]. Nat. Mater., 2013, 12: 1137
doi: 10.1038/nmat3795 pmid: 24240242
37 Park J, Du P, Jeon J K, et al. Magnesium corrosion triggered spontaneous generation of H2O2 on oxidized titanium for promoting angiogenesis [J]. Angew. Chem., Int. Ed., 2015, 54: 14753
doi: 10.1002/anie.v54.49
38 Gralnick J A, Newman D K. Extracellular respiration [J]. Mol. Microbiol., 2007, 65: 1
doi: 10.1111/j.1365-2958.2007.05778.x pmid: 17581115
39 Lovley D R. Dissimilatory metal reduction: from early life to bioremediation [J]. ASM News, 2002, 68: 231
40 Yang Y G, Xu M Y, Guo J, et al. Bacterial extracellular electron transfer in bioelectrochemical systems [J]. Process Biochem., 2012, 47: 1707
doi: 10.1016/j.procbio.2012.07.032
41 Richter K, Schicklberger M, Gescher J. Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration [J]. Appl. Environ. Microbiol., 2012, 78: 913
doi: 10.1128/AEM.06803-11
42 Saunders S H, Tse E C M, Yates M D, et al. Extracellular DNA promotes efficient extracellular electron transfer by Pyocyanin in Pseudomonas aeruginosa biofilms [J]. Cell, 2020, 182: 919
doi: S0092-8674(20)30871-0 pmid: 32763156
43 Light S H, Su L, Rivera-Lugo R, et al. A Flavin-based extracellular electron transfer mechanism in diverse gram-positive bacteria [J]. Nature, 2018, 562: 140
doi: 10.1038/s41586-018-0498-z
44 Gu Y Q, Srikanth V, Salazar-Morales A I, et al. Structure of Geobacter pili reveals secretory rather than nanowire behaviour [J]. Nature, 2021, 597: 430
doi: 10.1038/s41586-021-03857-w
45 Cai Y Y, Zhang W X, Jiang Y M. Effect of anode materials on the efficiency of extracellular electron transfer in microbial fuel cells [J]. Electr. Qual., 2020, (1): 52
45 蔡映芸, 章文贤, 蒋咏梅. 微生物燃料电池阳极材料对微生物胞外电子传递效率的影响 [J]. 电子质量, 2020, (1): 52
46 Zhang Z H, Li Z, Sun M C, et al. Strengthening mechanisms of microbial extracellular electron transfer process and efficient transformation of pollutants [J]. Acta Sci. Circum., 2020, 40: 3484
46 张照韩, 李 增, 孙沐晨 等. 微生物胞外电子传递过程强化机制及污染物高效转化 [J]. 环境科学学报, 2020, 40: 3484
47 Kong G N, Xu M Y, Yang Y G. Direct contact-dependent microbial extracellular electron transfer [J]. Acta Microbiol. Sin., 2017, 57: 643
47 孔冠楠, 许玫英, 杨永刚. 基于直接接触的微生物胞外电子传递 [J]. 微生物学报, 2017, 57: 643
48 Liu S R, Wu X E, Wang Y P. Progress in nanomaterials mediated microbial extracellular electron transfer [J]. CIESC J., 2021, 72: 3576
doi: 10.11949/0438-1157.20201839
48 刘姝睿, 吴雪娥, 王远鹏. 纳米材料介导微生物胞外电子传递过程的研究进展 [J]. 化工学报, 2021, 72: 3576
doi: 10.11949/0438-1157.20201839
49 Wang G M, Tang K W, Meng Z Y, et al. A quantitative bacteria monitoring and killing platform based on electron transfer from bacteria to a semiconductor [J]. Adv. Mater., 2020, 32: e2003616
50 Wang G M, Feng H Q, Gao A, et al. Extracellular electron transfer from aerobic bacteria to Au-Loaded TiO2 semiconductor without light: A new bacteria-killing mechanism other than localized surface plasmon resonance or microbial fuel cells [J]. ACS Appl. Mater. Interfaces, 2016, 8: 24509
doi: 10.1021/acsami.6b10052
51 Wang G M, Feng H Q, Hu L S, et al. An antibacterial platform based on capacitive carbon-doped TiO2 nanotubes after direct or alternating current charging [J]. Nat. Commun., 2018, 9: 2055
doi: 10.1038/s41467-018-04317-2
52 Fu J N, Zhu W D, Liu X M, et al. Self-activating anti-infection implant [J]. Nat. Commun., 2021, 12: 6907
doi: 10.1038/s41467-021-27217-4 pmid: 34824260
53 Yao J Z, Jiang T, Ji Y, et al. Water-fueled autocatalytic bactericidal pathway based on e-Fenton-like reactions triggered by galvanic corrosion and extracellular electron transfer [J]. J. Hazard. Mater., 2022, 440: 129730
doi: 10.1016/j.jhazmat.2022.129730
54 Ge Y, Liu J Y, Jiang T, et al. Self-disinfecting carbon filter: In situ spontaneous generation of reactive oxidative species via oxygen reduction reaction for efficient water treatment [J]. Colloids Surf., 2022, 648A: 129266
55 Zhang F, Wang H T, He Y J, et al. Case analysis of microbial corrosion in product oil pipeline [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 795
[1] 任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[2] 丁立, 邹文杰, 张雪姣, 陈均. ADC12铝合金表面硅锆复合转化膜的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[3] 李强, 路程, 唐颖浩, 唐建峰, 刘炳成. 湿气管道积液区X70CO2 局部腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[4] 袁磊, 谢新, 陈明辉, 李烽杰, 王福会. 20钢及其搪瓷涂层在400 ℃下的氧化和NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 890-895.
[5] 白一涵, 张航, 朱泽洁, 王疆瑛, 曹发和. 缝隙腐蚀内部微区离子浓度监测的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 828-836.
[6] 倪雨朦, 于英杰, 严慧, 王嵬, 李瑛. 铜铝/镍石墨可磨耗封严涂层相选择性溶解机制有限元研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[7] 吴佳佳, 徐鸣, 王鹏, 张盾. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.
[8] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[9] 骆晨, 吴雄, 宋汉强, 孙志华, 汤智慧. 海洋环境服役飞机发动机镁合金使用要求和研究方向分析[J]. 中国腐蚀与防护学报, 2023, 43(4): 787-794.
[10] 郭涛, 黄峰, 胡骞, 刘静. 9Ni钢铸坯在900~1250 ℃空气中的高温氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(4): 882-889.
[11] 吴多利, 吴昊天, 孙珲, 史建军, 魏新龙, 张超. 激光熔覆高温防护涂层研究现状及发展方向[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[12] 倪雅, 施方长, 戚继球. Ce添加对Zn-0.6Cu-0.3Ti合金组织与耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
[13] 郝文魁, 陈新, 徐玲铃, 韩钰, 陈云, 黄路遥, 祝志祥, 杨丙坤, 王晓芳, 张强. 电网碳钢、镀锌钢大气腐蚀等级图绘制研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
[14] 王长罡, DANIEL Enobong Felix, 李超, 董俊华, 杨华, 张东玖. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[15] 于英杰, 李瑛. 电化学-电感耦合等离子体原子发射光谱联用技术及其在金属腐蚀研究中的应用[J]. 中国腐蚀与防护学报, 2023, 43(4): 847-854.