飞机燃油系统微生物污染主动防治涂层研究进展
Research Progress on Coatings of Active Control of Microbiological Contamination for Aircraft Fuel System
通讯作者: 葛岩,E-mail:ge@nwpu.edu.cn,研究方向为生物、材料、电化学多学科交叉研究
收稿日期: 2022-09-16 修回日期: 2022-12-17
基金资助: |
|
Corresponding authors: GE Yan, E-mail:ge@nwpu.edu.cn
Received: 2022-09-16 Revised: 2022-12-17
Fund supported: |
|
作者简介 About authors

戚震辉,男,1983年生,教授,西北工业大学教授,博士生导师,国家级高层次青年人才,西北工业大学翱翔青年,陕西省柔性电子与健康科学国际联合研究中心副主任,全国空间科学及其应用标准化技术委员,全国腐蚀电化学及测试方法专业委员会委员,《ChineseChemicalLetters》杂志编委、《JournalofPolymerScience》杂志编委,教育部学位与研究生教育发展中心学科评估专家。获德国Charité基金会医疗健康领域ResearchtoMarketChallenge二等奖。主持国家自然基金、留学基金委创新型人才培养项目、陕西省重点研发计划、航空基金等16项科研及人才培养项目。以“生物电子”效应为研究基础,利用生物体与材料表面的电子传递效应,开发新型微电池涂层技术应用于军用飞机、空间站、医疗设备等涉及国家国防与民生多个重要领域。
基于航空事业对燃油系统微生物防治的的迫切需求,针对“燃油系统内部积水带来的微生物污染”的关键问题,将生物-材料-电子进行多学科交叉融合,拟以微生物胞外电子传递这一广泛存在的生物现象为切入点,围绕“水带来的微生物污染”与“新材料涂层如何主动杀菌”的关系进行探究,旨在建立安全高效的燃油系统微生物防治策略以保障飞机安全运行,利用微生物胞外电子传递作为电子来源,成为微电池涂层抑菌和生成ROS的关键,综述如何利用金属腐蚀电化学提供“主动”抗菌功能性涂层的设计原理和重要实验指导,同时也为其他涉及燃油系统微生物防治的研究提供新思路、开拓新途径。
关键词:
Owing to the urgent need of aviation industry for microbial control of the fuel system of aircraft, it is imperative to establish a safe and efficient microbial control strategy for the fuel system to ensure the safe operation of aircraft. Water is generally considered to be an undesirable substance in the fuel system, which may lead to microbial contamination. The novel antibacterial strategies that can turn water into things of value with high disinfection efficiency have been urgently needed for the fuel system. This review surveys the edged technologies which may provide the design principle and important experimental guidance of "active" antibacterial functional coating. Accordingly, two electron sources include the extracellular electron transfer and the galvanic corrosion on the coated metals may become the key to spontaneous microbial-control coating.
Keywords:
本文引用格式
戚震辉, 江涛, 赵茂锦, 蔡钟琪, 王瑞晨, 尚洁, 姚纪政, 葛岩.
QI Zhenhui, JIANG Tao, ZHAO Maojin, CAI Zhongqi, WANG Ruichen, SHANG Jie, YAO Jizheng, GE Yan.
随着航空事业的高速发展,飞机在国防经济领域发挥着巨大作用。但航空燃油系统微生物污染问题给飞行带来了严重安全隐患[1,2],美国空军年损失高达60亿美元[3]。因此,如何解决飞机燃油系统中的微生物污染问题是满足我国航空事业高质量发展的重大需求,摆在科研工作者面前的紧迫性任务。水作为微生物生长的必要条件,是飞机燃油系统微生物污染的关键源头[4]。然而飞机燃油在运输、储存和使用过程中不可避免会吸收水分,造成油箱设备内部积水。然而,现有飞机燃油系统微生物防治措施:如定期放水、人工清洁除菌、添加化学抗菌剂等“被动”人工防治措施效果有限、人工负担重,特别是在海洋性环境 (海军舰载机) 使用过程中问题突出,无法满足实际需求。因此,如果能改变水在燃油系统的“负面”属性,实现飞机燃油系统“主动”抗菌功能,降低微生物污染,减少人工干预负担,对保证飞机飞行安全具有重要的现实意义。
1 现有飞机燃油系统微生物主要防治措施
1.1 定期放水
1.2 添加抗菌剂
目前,抗菌剂主要包括天然抗菌剂、有机抗菌剂和无机抗菌剂3种[8,9]。目前,民航普遍使用国外的KATHON FP1.5 (异噻唑啉酮类) 和BIOBOR JF (硼烷类) 有机类抗菌剂。无机抗菌剂由于安全性、持久性、广谱抗菌性、耐热性等方面存在优势。如硝酸银中的银离子作为抗菌剂,其最低抑菌浓度 (MIC) 可低至2.1 μg/mL[10],且微生物不容易产生耐药性。但添加抗菌剂方法直接引入新污染源,可能会对燃油的质量造成伤害,因此十分注意抗菌剂的添加量。常规广谱杀菌剂虽然对灭菌有一定效果,但由于用量较大,常常使燃料的某些质量指标不合格,所以杀菌剂的使用范围还受到限制。目前只有在飞机燃料系统微生物检测结果为中度或重度污染时才进行杀菌剂处理[11],但有报道长期使用同一种有机杀菌剂容易导致微生物耐药性产生[12] 。
1.3 超声波及紫外线协同杀菌
利用超声波及紫外线协同杀菌发法是一种物理抗菌方法,其特点为不需要向航油内加入其他物质而达到抗菌目的。因此,不会将新污染源引入航油体系中。然而,仅利用超声波或紫外线杀灭微生物的效率不理想,一般先采用紫外线处理后,再利用超声波杀菌效果较好。在杀菌过程中超声波发生器需要连续工作,有较大能耗。因此,在整个航油存储过程中不能持续使用该方法持续灭菌。以超声波发生器为灭菌设备,需要额外使用专门的设备进行操作。
1.4 抗菌涂层
发展抗菌涂层是目前比较前沿的做法[13,14]。防腐涂料 (如036-2涂料等) 自身具有较优异的抗渗透性,漆膜阻抗高,具有优良的抗电化腐蚀性、附着力强、坚硬耐磨性好、不污染油品,且施工方便、快捷。防腐涂料自身如果抗菌性能不足有可能会变为微生物培养基促进微生物的生长繁殖,因此会在防腐涂层中掺杂抗菌剂提高防污能力。蔡森等[15]利用纳米ZnO、复合抗菌剂等制备了一种金属燃油舱的防霉型导静电涂料。赵欣等[16]则基于AgO抗菌剂发展了针对航油储运设备的缓释性抗菌复合涂层。Pompa等[17,18]研究表明由于油箱中特殊的微环境,硫酸盐还原菌等产生的S2-容易使游离的Ag+沉淀,而使抗菌活性大幅降低,因此仍需提高适应飞机燃油系统的高效抗菌能力。
从现有燃油系统微生物防治手段来看,目前存在的主要问题是: (1) 仍以“被动”的防治模式为主,人工干预负担较重; (2) 需复合多种抗菌剂,或采用提高抗菌浓度提高抗菌活性; (3) 缺乏在燃油系统的油水界面中对水敏感,能够“主动”释放抗菌物质的“主动”抗菌涂层,从而提高在污染初期微生物杀除效率。因此,发展有效适应飞机燃油系统的“广谱高效”、“主动持续”的新型微生物防治策略具有重要价值。
2 现有“主动”抗菌涂层构筑
2.1 基于扰乱质子浓度梯度的“主动持续”金属微电池抗菌涂层构筑
针对“主动持续”,金属微电池抗菌是近年来发展起来的新型抗菌表面改性技术。其利用在潮湿介质中电化学的主动反应性抗菌,并已在医用植入设备应用中显示出巨大优势。Cao等[19]在这一方面做出了开拓性工作,巧妙利用金属电偶腐蚀和细菌等微生物表面的电子传导链对环境的应激响应,通过等离子体浸没Ag+注入技术在Ti表面镶嵌纳米银颗粒,基于“肖特基接触”,Ag/Ti构成电偶腐蚀对,形成金属微电池涂层。当细菌接触金属微电池表面时,Ag/Ti电偶腐蚀对的阴极发生析氢反应,大量消耗细菌周围质子,严重“扰乱”细菌能量合成功能所依赖的“质子浓度梯度 (PMF)”,从而达到杀菌目的。有意思的是,微电池抗菌涂层作用过程中,Ag只是作为微电池阴极,本身并未被消耗,而这将大大减少银纳米颗粒进入正常细胞内的可能性。Shtansky等[20]进一步研究表明,该类微电池抗菌过程中溶液环境内Ag+浓度控制在0.35 μg/L以下,远低于Ag+最低杀菌浓度 (MBC) 10 ppb,证明是“微电池效应”起到了关键杀菌作用。在此基础上,刘宣勇等[21]进一步开发出兼具“抗菌和成骨”性能的“双功能微电池”钛金属改性层。杨柯等[22]也报道了在不锈钢表面设计了类似的铜基“微电池效应”抗菌,并表现出持续的抑菌作用,并已开始应用于医用植入设备。作为一个近几年刚刚兴起的研究领域,目前国际上仅有少数课题组对微电池抗菌进行研究并获得初步进展。金属“微电池效应”抗菌涂层的“主动持续”特性非常值得借鉴,但其目前只是针对人体植入设备进行设计,对于真菌、霉菌等是否是通过扰乱质子浓度梯度来达到抗菌性能的机制仍不清晰[23]。由于飞机燃油舱多采用高性能铝合金 (如2024、7075等),Al和Ag的金属电位差较大,容易发生电化学腐蚀,因此针对飞机油箱的抗菌涂层设计亟须仍需新的设计思路和策略。
2.2 基于金属腐蚀原理释放活性氧物质的“主动持续”抗菌涂层构筑
活性氧类 (ROS) 是一类高效广谱抗菌物质:典型的ROS物质包括超氧自由基 (·O2-)、过氧化氢 (H2O2)、羟自由基 (·OH) 等。作为强氧化剂,其广泛杀灭细菌、芽胞、病毒、真菌等微生物的作用已被证实,而且其杀灭速度较氯快600~3000倍[24]。其中,·OH的杀菌性能最强,·O2-次之。目前,水处理中常用的高级氧化过程 (AOPs) 就是基于·OH。由于·OH存留时间短,且几乎没有任何残留,比其它氧化剂如氯或臭氧等杀菌抗污更具有优越性[25]。Fenton反应和类Fenton反应都是AOPs技术中产生·OH的重要反应,其通过分解双氧水 (H2O2) 产生大量·OH,从而表现出高效去污除菌的效果。近年来,类Fenton反应引起了研究学者的特别关注,一系列不涉及Fe2+的类Fenton反应相继被报道[26,27],且催化效率被大幅提高[28]。目前已证明H2O2能在一些过渡金属 (如Ag、Cu等) 表面能发生类Fenton反应分解生成·OH、·O2-等强杀菌物质[29]。但是,目前绝大部分所报道的 (类) Fenton反应仍需要外部供给H2O2来启动反应。
氧还原反应 (ORR) 可在外部供能条件下生成H2O2物质:ORR是电化学中常见的阴极反应可提供 H2O2物质。根据反应条件和电极材料不同,可以出现不同的氧还原反应机理和决速步骤。目前,普遍接受的是在碱性条件四电子ORR和酸性条件二电子ORR两类途径[30]。四电子ORR受热力学平衡控制,因此选择一类合适的微电极材料使阴极反应选择性地发生二电子ORR有一定难度。近年来不少课题组开始关注这一科学问题[31~33]。迄今,已有文献报道在一些金属、合金、碳材料上均被证实可选择性的发生两电子氧还原反应:其中包括Au[34],Ag[35],Pb/Hg合金[36]等。但是,目前绝大部分所报道的二电子氧还原反应仍采用外部能量供给 (如外部电源、光催化) 来启动反应。Myoung-Ryul Ok研究组[37]报道了氧化钛表面涂覆Mg,利用阳极牺牲法提供电子,引发氧化钛表面自发进行二电子氧还原反应生成H2O2、·O2-等ROS物质,进而利用Mg2+促进成骨特性。这一研究表明,当有合适的外部电子供体存在下,在无外部能量供给下自发进行氧还原反应生成ROS物质是可能的。
2.3 利用微生物胞外电子传递的“主动持续”抗菌涂层构筑
胞外电子传递 (EET) 被认为是地球生命最古老的呼吸方式,但人类对其了解相对较少[38,39]。目前,胞外电子传递的电子传递方式和机制主要是基于希瓦氏菌属 (Shewanella) 和地杆菌属 (Geobacter) 的研究而提出的[40,41]。近年来,关于胞外电子传递的工作近年来一直是微生物领域研究的热点问题,其中关于细胞外电子穿梭体和导电纳米线介导的直接电子传递相关工作分别发表在Cell[42]和Nature杂志[43,44]。由于微生物胞外电子过程在自然界中普遍存在,并且在能源利用[45]和环境修复[46]等方面具有广阔的应用前景,但是低效的电子传递一直是其在实际应用中的关键瓶颈[47],如何强化微生物胞外电子传递过程吸引了众多科学家的注意[48]。利用微生物胞外电子传递抗菌是一个刚刚兴起的领域,目前仅有少数课题组对其进行研究。如香港城市大学朱剑豪课题组[49,50]报道的金或银修饰的TiO2纳米管 (半导体) 体系、金修饰的氧化锌纳米管 (半导体) 体系[51]、天津大学吴水林组[52]在HA/MoS2涂层改性的Ti6Al4V钛合金体系 (MoS2兼具导体、半导体性质) 研究表明通过胞外电子传递对大肠杆菌、金黄色葡萄球菌具有显著的抗菌性能。
3 针对燃油油水界面的“主动”抗菌涂层构筑
主动释放活性氧和胞外电子传递联用的“主动持续”金属微电池抗菌涂层的构筑。本课题组[53]报道了一种由双金属微电极体系构成的可在油水界面自催化的新型材料 (WFA,图1)。该种材料在水介质中通过串联二电子氧还原反应 (2e ORR) 和类芬顿反应 (Fenton-like reaction) 生成杀菌物质双氧水H2O2和其他活性氧物质ROS。选择贵金属Ag和过渡金属Ru构筑双金属 (Ag-Ru) 微电极体系的模型。银离子具有良好的杀菌活性,经过特定处理[54]后,可以与钯、钌、铂等金属形成微电池催化微区。通过电化学实验和H2O2与其他ROS的检测,验证了串联反应的存在和可行性。并在无自然光照射下,WFA Ag-Ru双金属颗粒微电极在2 h内对飞机燃油系统内常见菌 (如大肠杆菌、铜绿假单胞菌、枯草芽孢杆菌和硫酸盐还原菌[55]等) 的消毒效率均大于99.9999%。ROS猝灭实验和Ag+电感耦合等离子体质谱 (ICP-MS) 结果表明,H2O2和·O2-是其广谱活性和高效杀菌性能的主要作用物质。同时,WFA双金属微电极体系可以在飞机燃油系统无光黑暗条件下进行高效杀菌。基于金属离子的特性,双金属体系可以很容易地通过电化学沉积的方法涂覆在不同形状的金属表面,如不锈钢。同时,燃油微生物与微电池涂层表面接触时有明显的电流产生;当使用死的菌与涂层作用时,电流强度明显减弱、ROS释放现象基本消失。因此,微生物胞外电子传递是揭示燃油系统微生物在微电池涂层表面主动杀除机制的关键突破口。该双金属微电极杀菌体系利用水作为介质,同时适用于燃油体系黑暗条件,可为高效非化学自催化杀菌材料的开发提供新的思路。
图1
4 总结与展望
飞机燃油系统微生物污染问题给飞机飞行带来严重安全隐患。赋予燃油系统“主动”抗菌功能,在微生物污染初期提高微生物杀除效率,尽可能减少人工干预负担,使抗菌模式由“被动”转向“主动”模式,是目前亟需开展研究的方向之一。同时,飞机燃油系统微生物防护是涉及材料学、生物学、电化学等多学科交叉的共性问题,具有鲜明的学科交叉特征,因此开发新型高效燃油系统微生物防治方法有挑战性,但又迫在眉睫。从材料学角度分析,现有研究揭示的金属微电池改性层在抗菌性能方面表现突出,且微电池改性层可在燃油体系油水界面处协同释放具有广谱高效的活性氧杀菌物质,可提高飞机燃油系统微生物防治的“广谱高效”和“主动持续”性。然而,目前微生物-微电池涂层材料间具体电子传递机制尚不清楚,微生物胞外电子传递作为微生物与外界环境物质相互作用的重要途径又将这一问题指向了重要的生物学现象及其内在机制。揭示微生物胞外电子传递在微电池涂层表面主动杀菌过程中的具体作用机制及调控因素,深入阐明微生物胞外电子传递这一广泛存在的生物现象有望为燃油系统微生物主动防治机制研究奠定重要的前期基础。由于该领域目前的研究刚刚起步,在材料的选择设计上仍需兼顾涂层应用所涉及的燃油油箱环境的实际性能要求,这对具体研究开发提出了新的要求。总而言之,设计飞机燃油系统微生物防治主动型涂层策略,保障飞机安全飞行及我国航空事业高质量发展具有重要指导意义。
参考文献
Research on fuel microbial contamination of military aircraft
[J].
军机燃油微生物污染的研究
[J].
Microbial contamination and corrosion in aircraft fuel system
[J].
飞机燃油系统的微生物污染与腐蚀
[J].结合微生物生长繁殖所必需的水、营养物、温度及酸碱度等条件,对飞机燃油在生产、运输、储存及飞机日常使用维护过程中可能出现微生物污染原因进行分析;结合燃油系统中微生物生长繁殖特性,总结了微生物对燃油性能、油箱结构、油泵/油滤以及非金属材料的危害作用。此外,对比分析了现有飞机燃油系统微生物检测方法及其标准,并对国外飞机燃油系统微生物预防措施及流程进行分析。本综述将为我国今后飞机燃油系统微生物污染检测及预防等工作提供理论基础及研究方向,并在工程应用方面起到指导性作用。
A survey of microbial contamination in aviation fuel from aircraft fuel tanks
[J].Microbial contamination poses a great threat to aviation system security through mechanisms such as microbiologically influenced corrosion (MIC), fuel filter clogging, and fuel deterioration. In this study, a survey of microbial contamination in aviation fuel obtained from aircraft fuel tanks was performed to test the relationship between microbial contamination and aircraft service life. The contaminating microorganisms were counted, isolated, identified, and subjected to preliminary characterization. A low risk of microbial contamination in the selected samples was confirmed, and there was no significant difference in the counts between culturable bacteria and fungi (p > 0.05). Phylogenetic analysis tree indicated that the diversity of culturable microorganisms was rather low, with 17 bacterial isolates belonging to 13 genera and 12 fungal isolates belonging to 5 genera. No yeast was isolated. The growth characteristics of these isolates indicated that the aircraft fuel tanks harbored various microorganisms that were able to utilize the aviation fuel as a source of carbon and energy. Meanwhile, some isolates caused emulsification and produced acid. The conclusions of this study were that various hazardous microorganisms can root in aircraft aviation fuel tanks. There was no relationship between microbial contamination and aircraft service life (p > 0.05), and continuous good maintenance suppressed microbial proliferation.
Behaviour of water in jet fuel - A literature review
[J].
Influence of temperature on microbial induced corrosion of tank bottom for crude oil storage
[J].
温度对原油储罐罐底微生物腐蚀影响规律的研究
[J].为探究温度对原油储罐罐底微生物腐蚀 (均匀腐蚀和局部腐蚀) 的影响规律与机理,采用16S rRNA基因测序分析微生物种群的特征,利用扫描电镜、激光共聚焦显微镜观察微生物膜的形态和点蚀坑特征。结果表明,罐底水微生物含有嗜温和嗜热的硫酸盐还原菌 (SRB) 和腐生菌 (TGB),均匀腐蚀速率在65 ℃达到峰值,整体属于轻微腐蚀;点蚀速率在35 ℃达到峰值,达到0.8 mm/a,温度低于25 ℃及超过85 ℃后点蚀速率明显降低。温度对罐底板钢微生物腐蚀的影响与微生物种类耐温性有关,30~70 ℃间是点蚀敏感温度区间,点蚀坑与菌落的团簇生长有关,微生物首先在金属表面形成团簇状的菌落,然后代谢过程中菌落下的金属发生了快速腐蚀。
Corrosion behavior of X65 pipeline steel at oil-water interface region in hyperbaric CO2 environment
[J].
X65管线钢在油水两相界面处的CO2腐蚀行为研究
[J].利用失重法、电化学极化法、电化学阻抗谱及腐蚀形貌观察和腐蚀产物物相分析,研究了油水分层介质中X65管线钢在油水两相界面处的腐蚀行为及不同缓蚀剂在油水界面处的作用效果。结果表明,在CO<sub>2</sub>分压为0.9 MPa,温度为60 ℃,静止状态下的油水分层介质中,X65钢在油相区几乎不发生腐蚀,在油水两相界面处发生局部腐蚀,在水相区发生严重腐蚀。添加水溶性缓蚀剂十七烯基胺乙基咪唑啉季铵盐使得X65钢在该工况下的腐蚀速率降低,添加油溶性缓蚀剂癸硫醇反而使得X65钢在油水两相界面处的局部腐蚀加重,甚至出现了腐蚀沟槽。
Research progress of biocides for microbiologically influenced corrosion
[J].
微生物腐蚀杀菌剂研究进展
[J].结合近年来杀菌剂的研究和应用情况,针对不同类型微生物腐蚀现象,综述了油气田中用于防控细菌腐蚀的季铵盐类、胍类、杂环类和复配型杀菌剂的研究进展。对于目前研究较少的真菌和藻类所造成的微生物腐蚀,本文介绍了真菌和藻类诱导的金属腐蚀行为以及目前针对真菌和藻类杀菌剂的研究进展和应用情况。在此基础上总结了杀菌剂应用所面临的问题和未来发展趋势,为微生物腐蚀防护和杀菌剂的研究及合理使用提供参考。
Synthesis, corrosion inhibition and bactericidal performance of an ammonium salt surfactant containing thiadiazole
[J].
含噻二唑季铵盐表面活性剂的合成及缓蚀杀菌性能研究
[J].结合杂环化合物和季铵盐表面活性剂用作缓蚀剂和杀菌剂的结构特点,合成了含噻二唑杂环的季铵盐表面活性剂 (MTOTB),并采用<sup>1</sup>HNMR、ESI-MS和FT-IR对其结构进行表征。采用表面张力法研究其表面活性,采用电化学测试和表面分析的方法研究其在含硫酸盐还原菌 (SRB) 的模拟海水中对碳钢的缓蚀性能。结果表明,MTOTB在模拟海水中的临界胶束浓度为0.11 mmol/L。MTOTB浓度为0.2 mmol/L时,对在含SRB菌的模拟海水中浸泡21 d的碳钢的缓蚀率可达95.81%。SEM/EDS与XPS结果表明,MTOTB可以有效地吸附在碳钢表面,抑制碳钢的微生物腐蚀。
Bacterial resistance to silver nanoparticles and how to overcome it
[J].Silver nanoparticles have already been successfully applied in various biomedical and antimicrobial technologies and products used in everyday life. Although bacterial resistance to antibiotics has been extensively discussed in the literature, the possible development of resistance to silver nanoparticles has not been fully explored. We report that the Gram-negative bacteria Escherichia coli 013, Pseudomonas aeruginosa CCM 3955 and E. coli CCM 3954 can develop resistance to silver nanoparticles after repeated exposure. The resistance stems from the production of the adhesive flagellum protein flagellin, which triggers the aggregation of the nanoparticles. This resistance evolves without any genetic changes; only phenotypic change is needed to reduce the nanoparticles' colloidal stability and thus eliminate their antibacterial activity. The resistance mechanism cannot be overcome by additional stabilization of silver nanoparticles using surfactants or polymers. It is, however, strongly suppressed by inhibiting flagellin production with pomegranate rind extract.
Control of microbial contamination in aircraft fuel system
[J].
Water content, temperature and biocide effects on the growth kinetics of bacteria isolated from JP-8 aviation fuel storage tanks
[J].
China issued the relevant standards for oil supply engineering of civil transport airports
[J].
我国发布民用运输机场供油工程相关标准
[J].
Protection efficacy of TEOS/IBTS coating on microbial fouling of concrete in marine tidal areas
[J].
TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究
[J].
Study on antibacterial performance of antistatic and antibacterial corrosion protective coatings for linings of fuel storage tanks
[J].
油舱内壁防霉导静电防腐蚀涂料抗菌性能研究
[J].
Domestic application and development status of anti-bacterial agent
[J].
我国抗菌剂的应用与发展现状
[J].
Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines
[J].Despite the current advancement in drug discovery and pharmaceutical biotechnology, infection diseases induced by bacteria continue to be one of the greatest health problems worldwide, afflicting millions of people annually. Almost all microorganisms have, in fact, an intrinsic outstanding ability to flout many therapeutic interventions, thanks to their fast and easy-to-occur evolutionary genetic mechanisms. At the same time, big pharmaceutical companies are losing interest in new antibiotics development, shifting their capital investments in much more profitable research and development fields. New smart solutions are, thus, required to overcome such concerns, and should combine the feasibility of industrial production processes with cheapness and effectiveness. In this framework, nanotechnology-based solutions, and in particular silver nanoparticles (AgNPs), have recently emerged as promising candidates in the market as new antibacterial agents. AgNPs display, in fact, enhanced broad-range antibacterial/antiviral properties, and their synthesis procedures are quite cost effective. However, despite their increasing impact on the market, many relevant issues are still open. These include the molecular mechanisms governing the AgNPs-bacteria interactions, the physico-chemical parameters underlying their toxicity to prokaryotes, the lack of standardized methods and materials, and the uncertainty in the definition of general strategies to develop smart antibacterial drugs and devices based on nanosilver. In this review, we analyze the experimental data on the bactericidal effects of AgNPs, discussing the complex scenario and presenting the potential drawbacks and limitations in the techniques and methods employed. Moreover, after analyzing in depth the main mechanisms involved, we provide some general strategies/procedures to perform antibacterial tests of AgNPs, and propose some general guidelines for the design of antibacterial nanosystems and devices based on silver/nanosilver.
Activity inhibition of sulfate reducing bacteria using some cationic thiol surfactants and their nanostructures
[J].
Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects
[J].Titanium embedded with silver nanoparticles (Ag NPs) using a single step silver plasma immersion ion implantation (Ag-PIII) demonstrate micro-galvanic effects that give rise to both controlled antibacterial activity and excellent compatibility with osteoblasts. Scanning electron microscopy (SEM) shows that nanoparticles with average sizes of about 5 nm and 8 nm are formed homogeneously on the titanium surface after undergoing Ag-PIII for 0.5 h and 1 h, respectively. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) indicate that those nanoparticles are metallic silver produced on and underneath the titanium surface via a local nucleation process from the solid solution of α-Ti(Ag). The Ag-PIII samples inhibit the growth of both Staphylococcus aureus and Escherichia coli while enhancing proliferation of the osteoblast-like cell line MG63. Electrochemical polarization and Zeta potential measurements demonstrate that the low surface toxicity and good cytocompatibility are related to the micro-galvanic effect between the Ag NPs and titanium matrix. Our results show that the physico-chemical properties of the Ag NPs are important in the control of the cytotoxicity and this study opens a new window for the design of nanostructured surfaces on which the biological actions of the Ag NPs can be accurately tailored.Copyright © 2010 Elsevier Ltd. All rights reserved.
Antibacterial performance of TiCaPCON films incorporated with Ag, Pt, and Zn: bactericidal ions versus surface microgalvanic interactions
[J].
Bifunctional galvanics mediated selective toxicity on titanium
[J].
Influence of 317L-Cu antibacterial stainless steel on biological behavior of fibroblasts in mice
[J].
317L-Cu抗菌不锈钢对小鼠成纤维细胞生物学行为的影响
[J].
Research progress on mildew induced corrosion of Al-alloy
[J].
铝合金霉菌腐蚀研究进展
[J].结合近年来铝合金霉菌腐蚀机制与防护领域研究成果,介绍了代表性霉菌的种类及影响霉菌活性的主要因素,重点总结和讨论了铝合金霉菌腐蚀机制,主要包括酸蚀机制、浓差电池机制、以及其他可能存在直接电子传递机制和霉菌铝合金直接界面作用机制。霉菌通过新陈代谢可以产生大量的有机酸,能够显著地降低介质和生物膜内的pH,从而导致酸蚀引发局部腐蚀。霉菌在铝合金表面形成的生物膜是诱发氧浓差电池产生的原因之一,铝合金霉菌腐蚀过程中潜在的直接电子传递及铝合金和霉菌的直接界面作用也是导致铝合金局部腐蚀的重要原因之一。最后介绍了目前常用的铝合金霉菌腐蚀控制方法,展望了未来铝合金霉菌腐蚀的研究重点,为铝合金霉菌腐蚀研究提供参考。
Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy, and beyond
[J].Reactive oxygen species (ROS) can attack a diverse range of targets to exert antimicrobial activity, which accounts for their versatility in mediating host defense against a broad range of pathogens. Most ROS are formed by the partial reduction in molecular oxygen. Four major ROS are recognized comprising superoxide (O2•-), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen ((1)O2), but they display very different kinetics and levels of activity. The effects of O2•- and H2O2 are less acute than those of •OH and (1)O2, because the former are much less reactive and can be detoxified by endogenous antioxidants (both enzymatic and nonenzymatic) that are induced by oxidative stress. In contrast, no enzyme can detoxify •OH or (1)O2, making them extremely toxic and acutely lethal. The present review will highlight the various methods of ROS formation and their mechanism of action. Antioxidant defenses against ROS in microbial cells and the use of ROS by antimicrobial host defense systems are covered. Antimicrobial approaches primarily utilizing ROS comprise both bactericidal antibiotics and nonpharmacological methods such as photodynamic therapy, titanium dioxide photocatalysis, cold plasma, and medicinal honey. A brief final section covers reactive nitrogen species and related therapeutics, such as acidified nitrite and nitric oxide-releasing nanoparticles.© 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials
[J].Centralized water treatment has dominated in developed urban areas over the past century, although increasing challenges with this model demand a shift to a more decentralized approach wherein advanced oxidation processes (AOPs) can be appealing treatment options. Efforts to overcome the fundamental obstacles that have thus far limited the practical use of traditional AOPs, such as reducing their chemical and energy input demands, target the utilization of heterogeneous catalysts. Specifically, recent advances in nanotechnology have stimulated extensive research investigating engineered nanomaterial (ENM) applications to AOPs. In this Perspective, we critically evaluate previously studied ENM catalysts and the next-generation treatment technologies they seek to enable. Opportunities for improvement exist at the intersection of materials science and treatment process engineering, as future research should aim to enhance catalyst properties while considering the unique roadblocks to practical ENM implementation in water treatment.
Tailoring the electronic metal-support interactions in supported atomically dispersed gold catalysts for efficient Fenton-like reaction
[J].
Using MoS2 nanomaterials to generate or remove reactive oxygen species: A review
[J].
Overturned loading of inert CeO2 to active Co3O4 for unusually improved catalytic activity in Fenton-like reactions
[J].
Formation of superoxide ion during the decomposition of hydrogen peroxide on supported metals
[J].
A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen peroxide
[J].
Strong metal-support interaction boosts activity, selectivity, and stability in electrosynthesis of H2O2
[J].
An efficient interfacial synthesis of two-dimensional metal-organic framework nanosheets for electrochemical hydrogen peroxide production
[J].
Selective electrochemical H2O2 production through two-electron oxygen electrochemistry
[J].
Electrocatalysis on gold
[J].This perspective article reviews recent advances in the study of important catalytic reactions on gold electrodes. The paper discusses both oxidation and reduction reactions: the oxidation of carbon monoxide and alcohols as well as the oxygen reduction reaction on gold electrodes and also a brief discussion of other interesting reactions on gold electrodes such as the amine borane oxidation and the CO2 reduction. A common theme in electrocatalysis on gold is the sensitive dependence of various reaction rates on pH and gold surface structure. The electrocatalysis of redox reactions on gold is highly pH dependent, often preferring alkaline media, due to the prominent role of negatively charged reaction intermediates related to the fact that gold does not bind the neutral intermediates strongly enough. Gold also tends to be a selective catalyst, again due to its weak adsorption properties, as on gold the reaction often stops when a difficult bond breaking or making event will be the necessary next step.
Oxygen electroreduction on Ag (111) : The pH effect
[J].
Enabling direct H2O2 production through rational electrocatalyst design
[J].Future generations require more efficient and localized processes for energy conversion and chemical synthesis. The continuous on-site production of hydrogen peroxide would provide an attractive alternative to the present state-of-the-art, which is based on the complex anthraquinone process. The electrochemical reduction of oxygen to hydrogen peroxide is a particularly promising means of achieving this aim. However, it would require active, selective and stable materials to catalyse the reaction. Although progress has been made in this respect, further improvements through the development of new electrocatalysts are needed. Using density functional theory calculations, we identify Pt-Hg as a promising candidate. Electrochemical measurements on Pt-Hg nanoparticles show more than an order of magnitude improvement in mass activity, that is, A g(-1) precious metal, for H2O2 production, over the best performing catalysts in the literature.
Magnesium corrosion triggered spontaneous generation of H2O2 on oxidized titanium for promoting angiogenesis
[J].
Extracellular respiration
[J].Although it has long been known that microbes can generate energy using diverse strategies, only recently has it become clear that a growing number involve electron transfer to or from extracellular substrates. The best-known example of what we will term 'extracellular respiration' is electron transfer between microbes and minerals, such as iron and manganese (hydr)oxides. This makes sense, given that these minerals are sparingly soluble. What is perhaps surprising, however, is that a number of substrates that might typically be classified as 'soluble' are also respired at the cell surface. There are several reasons why this might be the case: the substrate, in its ecological context, might be associated with a solid surface and thus effectively insoluble; the substrate, while soluble, might simply be too large to transport inside the cell; or the substrate, while benign in one redox state, might become toxic after it is metabolized. In this review, we discuss various examples of extracellular respiration, paying particular attention to what is known about the molecular mechanisms underlying these processes. As will become clear, much remains to be learned about the biochemistry, cell biology and regulation of extracellular respiration, making it a rich field of study for molecular microbiologists.
Dissimilatory metal reduction: from early life to bioremediation
[J].
Bacterial extracellular electron transfer in bioelectrochemical systems
[J].
Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration
[J].\n An extension of the respiratory chain to the cell surface is necessary to reduce extracellular electron acceptors like ferric iron or manganese oxides. In the past few years, more and more compounds were revealed to be reduced at the surface of the outer membrane of Gram-negative bacteria, and the list does not seem to have an end so far.\n Shewanella\n as well as\n Geobacter\n strains are model organisms to discover the biochemistry that enables the dissimilatory reduction of extracellular electron acceptors. In both cases,\n c\n -type cytochromes are essential electron-transferring proteins. They make the journey of respiratory electrons from the cytoplasmic membrane through periplasm and over the outer membrane possible. Outer membrane cytochromes have the ability to catalyze the last step of the respiratory chains. Still, recent discoveries provided evidence that they are accompanied by further factors that allow or at least facilitate extracellular reduction. This review gives a condensed overview of our current knowledge of extracellular respiration, highlights recent discoveries, and discusses critically the influence of different strategies for terminal electron transfer reactions.\n
Extracellular DNA promotes efficient extracellular electron transfer by Pyocyanin in Pseudomonas aeruginosa biofilms
[J].Redox cycling of extracellular electron shuttles can enable the metabolic activity of subpopulations within multicellular bacterial biofilms that lack direct access to electron acceptors or donors. How these shuttles catalyze extracellular electron transfer (EET) within biofilms without being lost to the environment has been a long-standing question. Here, we show that phenazines mediate efficient EET through interactions with extracellular DNA (eDNA) in Pseudomonas aeruginosa biofilms. Retention of pyocyanin (PYO) and phenazine carboxamide in the biofilm matrix is facilitated by eDNA binding. In vitro, different phenazines can exchange electrons in the presence or absence of DNA and can participate directly in redox reactions through DNA. In vivo, biofilm eDNA can also support rapid electron transfer between redox active intercalators. Together, these results establish that PYO:eDNA interactions support an efficient redox cycle with rapid EET that is faster than the rate of PYO loss from the biofilm.Copyright © 2020 Elsevier Inc. All rights reserved.
A Flavin-based extracellular electron transfer mechanism in diverse gram-positive bacteria
[J].
Structure of Geobacter pili reveals secretory rather than nanowire behaviour
[J].
Effect of anode materials on the efficiency of extracellular electron transfer in microbial fuel cells
[J].
微生物燃料电池阳极材料对微生物胞外电子传递效率的影响
[J].
Strengthening mechanisms of microbial extracellular electron transfer process and efficient transformation of pollutants
[J].
微生物胞外电子传递过程强化机制及污染物高效转化
[J].
Direct contact-dependent microbial extracellular electron transfer
[J].
基于直接接触的微生物胞外电子传递
[J].
Progress in nanomaterials mediated microbial extracellular electron transfer
[J].The process of microbial extracellular electron transfer (EET) is widespread in nature and has broad application prospects in energy utilization and environmental remediation. However, inefficient electron transfer has always been a key bottleneck in practical applications. Nanomaterials have unique properties such as surface effect, volume effect, quantum size, and macro-quantum tunneling effect. The combination of nanomaterials and electroactive microorganisms can achieve complementary advantages, which can shorten the charge transfer path and increase the rate of EET. This review introduces the pathways of EET, as well as the factors affecting the interface EET such as the electron transfer ability, redox potential, surface structure and biocompatibility of nanomaterials, with a focus on various strategies for constructing the interface between nanomaterials and electroactive microorganisms, and the applicability and limitations of these strategies are summarized. Finally, the future research direction of nanomaterials to enhance electroactive microorganism EET is prospected.
纳米材料介导微生物胞外电子传递过程的研究进展
[J].微生物胞外电子传递(EET)过程在自然界中普遍存在,并且在能源利用和环境修复等方面具有广阔的应用前景,但是低效的电子传递一直是其在实际应用中的关键瓶颈。纳米材料具有独特的表面效应、体积效应、量子尺寸及宏观量子隧道效应等性质,引入纳米材料与电活性微生物相结合实现优势互补,可以缩短电荷转移路径,从而提高EET效率。本文综述了EET方式,以及纳米材料的电子转移能力、氧化还原电势、表面结构与性质、生物相容性及纳米材料-微生物的界面构筑对EET过程的影响,重点阐述了纳米材料与电活性微生物界面构筑的各种策略,并讨论了这些策略的适用性和局限性,最后展望了纳米材料强化电活性微生物EET的未来研究方向。
A quantitative bacteria monitoring and killing platform based on electron transfer from bacteria to a semiconductor
[J].
Extracellular electron transfer from aerobic bacteria to Au-Loaded TiO2 semiconductor without light: A new bacteria-killing mechanism other than localized surface plasmon resonance or microbial fuel cells
[J].
An antibacterial platform based on capacitive carbon-doped TiO2 nanotubes after direct or alternating current charging
[J].Electrical interactions between bacteria and the environment are delicate and essential. In this study, an external electrical current is applied to capacitive titania nanotubes doped with carbon (TNT-C) to evaluate the effects on bacteria killing and the underlying mechanism is investigated. When TNT-C is charged, post-charging antibacterial effects proportional to the capacitance are observed. This capacitance-based antibacterial system works well with both direct and alternating current (DC, AC) and the higher discharging capacity in the positive DC (DC+) group leads to better antibacterial performance. Extracellular electron transfer observed during early contact contributes to the surface-dependent post-charging antibacterial process. Physiologically, the electrical interaction deforms the bacteria morphology and elevates the intracellular reactive oxygen species level without impairing the growth of osteoblasts. Our finding spurs the design of light-independent antibacterial materials and provides insights into the use of electricity to modify biomaterials to complement other bacteria killing measures such as light irradiation.
Self-activating anti-infection implant
[J].Clinically, it is difficult to endow implants with excellent osteogenic ability and antibacterial activity simultaneously. Herein, the self-activating implants modified with hydroxyapatite (HA)/MoS coating are designed to prevent Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) infections and accelerate bone regeneration simultaneously. The electron transfer between bacteria and HA/MoS is triggered when bacteria contacted with the material. RNA sequencing data reveals that the expression level of anaerobic respiration-related genes is up-regulated and the expression level of aerobic respiration-related genes is down-regulated when bacteria adhere to the implants. HA/MoS presents a highly effective antibacterial efficacy against both S. aureus and E. coli because of bacterial respiration-activated metabolic pathway changes. Meanwhile, this coating promotes the osteoblastic differentiation of mesenchymal stem cells by altering the potentials of cell membrane and mitochondrial membrane. The proposed strategy exhibits great potential to endow implants with self-activating anti-infection performance and osteogenic ability simultaneously.© 2021. The Author(s).
Water-fueled autocatalytic bactericidal pathway based on e-Fenton-like reactions triggered by galvanic corrosion and extracellular electron transfer
[J].
Self-disinfecting carbon filter: In situ spontaneous generation of reactive oxidative species via oxygen reduction reaction for efficient water treatment
[J].
Case analysis of microbial corrosion in product oil pipeline
[J].
/
〈 |
|
〉 |
