Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (2): 106-112    DOI: 10.11902/1005.4537.2014.035
  本期目录 | 过刊浏览 |
S32750超级双相不锈钢在NaCl溶液中的临界点蚀温度及电化学腐蚀机理
何进1,2, 晏敏胜1,2, 杨丽景2, Masoumeh Moradi2, 宋振纶2, 蒋业华1()
1. 昆明理工大学材料科学与工程学院 昆明 650093
2. 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 宁波 315201
Electrochemical Corrosion and Critical Pitting Temperature of S32750 Super Duplex Stainless Steel in NaCl Solution
HE Jin1,2, YAN Minsheng1,2, YANG Lijing2, Masoumeh Moradi2, SONG Zhenlun2, JIANG Yehua1()
1. School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2. Key Laboratory of Marine New Materials and Related Technology, Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
全文: PDF(2597 KB)   HTML
摘要: 

采用电化学测试研究了S32750超级双相不锈钢在3.5%NaCl溶液中的临界点蚀温度 (CPT) 及电化学腐蚀机理,结合试样点蚀前后的形貌变化,得出S32750不锈钢的临界点蚀温度为71 ℃。在低于临界点蚀温度时,不锈钢表面能形成稳定的钝化膜;高于临界点蚀温度时,由于Cl-的活性增加及钝化膜的溶解,不锈钢表面产生点蚀现象,且温度越高,点蚀越剧烈。构建了双相不锈钢S32750临界点蚀温度前后的电化学腐蚀模型。

关键词 双相不锈钢临界点蚀温度钝化腐蚀    
Abstract

The electrochemical corrosion behavior and critical pitting temperature (CPT) of S32750<br>super duplex stainless steel in 3.5%NaCl solution were investigated by electrochemical techniques. The morphologies of the steel before after pitting corrosion were observed by scanning electron microscope. The CPT of the S32750 steel was identified as 71 ℃. A passive film could form on the steel surface when the solution temperature was below the CPT. While, when the solution temperature was above the CPT, pitting corrosion occurred on the steel surface as the result of the breakdown of the passive film due to the increase of the Cl- activity. Pitting corrosion became more serious with the increasing temperature. Moreover, the corrosion models of the steel below and above the CPT were sketched respectively.

Key wordsduplex stainless steel    critical pitting temperature    passivation    corrosion
收稿日期: 2014-03-12     
ZTFLH:  TG171  
基金资助:国家自然科学基金项目 (51301193)和中国博士后基金面上项目(2013M540503) 资助
作者简介: null

何进,男,1988年生,硕士生

引用本文:

何进, 晏敏胜, 杨丽景, Masoumeh Moradi, 宋振纶, 蒋业华. S32750超级双相不锈钢在NaCl溶液中的临界点蚀温度及电化学腐蚀机理[J]. 中国腐蚀与防护学报, 2015, 35(2): 106-112.
Jin HE, Minsheng YAN, Lijing YANG, Moradi Masoumeh, Zhenlun SONG, Yehua JIANG. Electrochemical Corrosion and Critical Pitting Temperature of S32750 Super Duplex Stainless Steel in NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2015, 35(2): 106-112.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.035      或      https://www.jcscp.org/CN/Y2015/V35/I2/106

图1  S32750双相不锈钢的显微组织
图2  S32750双相不锈钢在3.5%NaCl溶液中的动电位极化曲线
图3  自腐蚀电流密度、极化电阻及钝化膜击穿电位随温度的变化规律
图4  S32750双相不锈钢在0.6 V (vs SCE) 恒电位下的电流密度随温度变化曲线
图5  S32750双相不锈钢在不同温度的NaCl溶液中的EIS
图6  S32750双相不锈钢在达到CPT前后腐蚀过程的等效电路
图7  钝化膜的电荷转移电阻随温度的变化规律
Temperature / ℃ Rs / Ωcm2 Qpass / Ω-1sncm2 Qpass / n1 Rpass / Ωcm2 Qpit / Ω-1sncm2 Qpit / n2 Rpit / Ωcm2
25 3.58 6.16×10-5 0.82 2.50×103 --- --- ——
35 2.10 8.23×10-5 0.77 2.06×103 --- --- ——
45 2.24 8.88×10-5 0.74 1.99×103 --- --- ——
55 1.73 9.59×10-5 0.66 1.97×103 --- --- ——
65 1.38 1.06×10-4 0.68 1.94×103 --- --- ——
75 2.26 3.92×10-5 0.81 1.24×102 7.03×10-5 0.75 131.50
85 1.88 9.99×10-5 0.80 2.46×101 1.88×10-4 0.71 15.28
表1  根据EIS拟合得到的各等效元件数值
图8  去除直流漂移后随温度变化的噪声曲线
图9  S32750双相不锈钢原始的、未发生点蚀以及发生点蚀后的表面形貌
图10  钝化电位为0.6 V (vs SCE) 时的阳极极化电流密度与温度的关系图
图11  在低于和高于CPT时S32750双相不锈钢表面的钝化和点蚀模型
[1] Wu J. Duplex Stainless Steel[M]. Bejing: Metallurgical Industry Press, 1999
[1] (吴玖. 双相不锈钢[M]. 北京: 冶金工业出版社, 1999)
[2] Brigham R, Tozer E. Temperature as a pitting criterion[J]. Corrosion, 1973, 29: 33
[3] Brigham R, Tozer E. Effect of alloying additions on the pitting resistance of 18%Cr austenitic stainless steel[J]. Corrosion, 1974, 30: 161
[4] Weng Y J. Corrosion properties of stainless steel and the influence of metallurgical factors[J]. Corros. Sci. Prot. Technol., 1989, 1(3): 8
[4] (翁永基. 不锈钢的腐蚀特性及冶金因素的影响[J]. 腐蚀科学与防护技术, 1989, 1(3): 8)
[5] Nilsson J O. Super duplex stainless steels[J]. Mater. Sci. Technol., 1992, 8(8): 685
[6] Lorenz K, Medawar G. Corrosion of austenitic chromium-nickel steels with and without nitrogen additions and their resistance to chloride solutions[J]. Thyssen Forschung, 1969, 1(3): 97
[7] Zhang H W, Wang K. The influence of environmental factors on the pitting potential of stainless steel[J]. J. Beijing Univ. Iron Steel Technol., 1985, 3: 104
[7] (张蕙文, 王旷. 环境因素对不锈钢点蚀电位的影响[J]. 北京钢铁学院学报, 1985, 3: 104)
[8] Liang M H, Zhao G X, Feng Y R, et al. Criticial pitting temperature of 22Cr duplex stainless steel[J]. Corros. Sci. Prot. Technol., 2005, 17(6): 392
[8] (梁明华, 赵国仙, 冯耀荣等. 22Cr双相不锈钢的临界点蚀温度研究[J]. 腐蚀科学与防护技术, 2005, 17(6): 392)
[9] Ovarfort R. New electrochemical cell for pitting corrosion testing[J]. Corros. Sci., 1988, 28: 135
[10] Qvarfort R. Critical pitting temperature measurements of stainless steels with an improved electrochemical method[J]. Corros. Sci., 1989, 29: 987
[11] Salinas-Bravo V M, Newman R C. An alternative method to determine criticalpitting temperature of stainless steels in ferric chloride solution[J]. Corros. Sci., 1994, 36: 67
[12] Moayed M H, Newman R C. Evolution of current transients and morphology of metastable and stable pitting on stainless steel near the critical pitting temperature[J]. Corros. Sci., 2006, 48(4): 1004
[13] ASTM G150-99. Standard test method for electrochemical critical pitting temperature testing of stainless steels[S]
[14] Cao C N, Chang X Y, Lin H C. Features of electrochemical noises during pitting corrosion[J]. J. Chin. Soc. Corros. Prot., 1989, 9(1): 21
[14] (曹楚南, 常晓元, 林海潮. 孔蚀过程中的电化学噪声特征[J]. 中国腐蚀与防护学报, 1989, 9(1): 21)
[15] Hu H L, Li N, Cheng J N. A review on progress of application of electrochemical noise in corrosion study[J]. Corros. Sci. Prot. Technol., 2007, 19(2): 114
[15] (胡会利, 李宁, 程瑾宁. 电化学噪声在腐蚀领域中的研究进展[J]. 腐蚀科学与防护技术, 2007, 19(2): 114)
[16] Qiu Y B, Huang J Y, Guo X P. Trend removal in the analysis of electrochemical noise by polynomial fitting[J]. J. Huazhong Univ. Sci. Technol.(Nat. Sci.), 2005, 33(10): 39
[16] (邱于兵, 黄家怿, 郭兴蓬. 多项式拟合法消除电化学噪声的直流漂移[J]. 华中科技大学学报 (自然科学版), 2005, 33(10): 39)
[17] Streicher M A. Pitting corrosion of 18Cr-8Ni stainless steel[J]. J. Electrochem. Soc., 1956, 103(7): 375
[1] 李承媛, 陈旭, 何川, 李鸿瑾, 潘鑫. 埋地金属管道交流电腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[2] 明男希, 王岐山, 何川, 郑平, 陈旭. 温度对X70钢在含CO2地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[3] 王坤泰, 陈馥, 李环, 罗米娜, 贺杰, 廖子涵. 铁细菌对L245钢腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[4] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[5] 黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[6] 葛鹏莉, 曾文广, 肖雯雯, 高多龙, 张江江, 李芳. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[7] 何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[8] 张艺凡, 袁晓光, 黄宏军, 左晓姣, 程禹霖. 铜铝层状复合板中性盐雾腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[9] 姜伯晨, 曹将栋, 曹雪玉, 王建涛, 张少朋. Gd2(Zr1-xCex)2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[10] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[11] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[12] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[14] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[15] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.