Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (1): 53-57    DOI: 10.11902/1005.4537.2016.170
  研究报告 本期目录 | 过刊浏览 |
等离子喷涂SrZrO3热障涂层的CaO-MgO-Al2O3-SiO2 (CMAS) 腐蚀行为
张珊榕1,2,董红英1,2,马文2,3(),尹轶川2,3,李新慧2,3,白玉2,3,贾瑞灵2,3
1 内蒙古工业大学化工学院 呼和浩特 010051
2 内蒙古工业大学 内蒙古自治区薄膜与涂层重点实验室 呼和浩特 010051
3 内蒙古工业大学材料科学与工程学院 呼和浩特 010051
Corrosion Resistance of Air Plasma Sprayed Thermal Barrier Coating SrZrO3 on Superalloy In718 against CaO-MgO-Al2O3-SiO2 (CMAS)
Shanrong ZHANG1,2,Hongying DONG1,2,Wen MA2,3(),Yichuan YIN2,3,Xinhui LI2,3,Yu BAI2,3,Ruiling JIA2,3
1 School of Chemical Engineering,Inner Mongolia University of Technology, Hohhot 010051, China
2 Inner Mongolia Key Laboratory of Thin Film and Coatings Technology, Inner Mongolia University of Technology, Hohhot 010051, China
3 School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
全文: PDF(866 KB)   HTML
摘要: 

采用固相法合成SrZrO3粉末并对合成的粉末进行喷雾造粒,采用大气等离子喷涂 (APS) 制备SrZrO3热障涂层 (TBCs)。将合成的SrZrO3粉末与CaO-MgO-Al2O3-SiO2 (CMAS) 粉末混合,以及在等离子喷涂SrZrO3涂层表面涂覆CMAS粉末,分别在1150和1250 ℃进行腐蚀行为研究,分别使用XRD和SEM对腐蚀产物相和涂层显微结构进行表征。结果表明:在1150 ℃下,SrZrO3粉末不与CMAS发生腐蚀反应;当温度升高到1250 ℃时,两者发生反应,腐蚀1 h后生成ZrSiO4,CaZrO3,SrAl2O4t-ZrO2,而腐蚀4 h后出现新相m-ZrO2。在1250 ℃下,随着腐蚀时间增长,反应生成的t-ZrO2转变为m-ZrO2,此时的腐蚀产物层可抑制CMAS的进一步腐蚀。

关键词 大气等离子体喷涂热障涂层CMASSrZrO3    
Abstract

SrZrO3 powders were synthesized by solid-state reaction and then spray granulation. The SrZrO3 coating on superalloy In718 was prepared by air plasma spray (APS). The corrosion behavior of the SrZrO3 coated alloy beneath a thin deposit of CMAS (CaO-MgO-Al2O3-SiO2) was examined in air at 1150 and 1250 oC for 1, 4 and 12 h respectively, while the reaction of powder mixture of SrZrO3 and CMAS was investigated paralell. The corrosion products of SrZrO3 powders and the microstructure of SrZrO3 coating after corrosion were characterized by XRD and SEM, respectively. The reaction between the two powders of SrZrO3 and CMAS did not occur at 1150 oC, whereas occurred at 1250 oC for 1 h, which resulted in the formation of corrosion products of ZrSiO4, CaZrO3, SrAl2O4 and t-ZrO2, and then a new phase of m-ZrO2 did additionally appear for 4 h corrosion. The corrosion product of t-ZrO2 was formed on the SrZrO3 coating surface after CMAS attack, and the phase transition from t-ZrO2 to m-ZrO2 occurred as the corrosion time increased, the formation of the corrosion products could suppress the further corrosion of the SrZrO3 coating by CMAS.

Key wordsair plasma spray    thermal barrier coating    CMAS    SrZrO3
收稿日期: 2016-09-18     
基金资助:国家自然科学基金 (51462026和51672136) 及内蒙古自然科学基金 (2014MS0509)

引用本文:

张珊榕,董红英,马文,尹轶川,李新慧,白玉,贾瑞灵. 等离子喷涂SrZrO3热障涂层的CaO-MgO-Al2O3-SiO2 (CMAS) 腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 53-57.
Shanrong ZHANG, Hongying DONG, Wen MA, Yichuan YIN, Xinhui LI, Yu BAI, Ruiling JIA. Corrosion Resistance of Air Plasma Sprayed Thermal Barrier Coating SrZrO3 on Superalloy In718 against CaO-MgO-Al2O3-SiO2 (CMAS). Journal of Chinese Society for Corrosion and protection, 2017, 37(1): 53-57.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.170      或      https://www.jcscp.org/CN/Y2017/V37/I1/53

Coating type Arc current / A Spray distance / mm Feeding rage / gmin-1 Plasma gas Ar/H2 / Lmin-1
Bond 500 120 50 30/10
Top 550 110 42 35/12
表1  大气等离子喷涂粘结层和陶瓷层的工艺参数
图1  SrZrO3喷涂粉和制备态SrZrO3涂层的XRD谱
图2  SrZrO3与CMAS混合粉末在不同温度下热处理1 h后的XRD谱
图3  SrZrO3与CMAS混合粉末在1250 ℃下热处理不同时间后的XRD谱
图4  SrZrO3涂层在1150和1250 ℃下CMAS腐蚀1 h后的截面SEM像及1250 ℃下腐蚀后对应的元素面扫描结果
图5  SrZrO3涂层在1250 ℃经CMAS腐蚀不同时间后的截面SEM像
图6  图5b,d和f中球状颗粒的EDS分析
图7  SrZrO3涂层在1250 ℃下经CMAS腐蚀形成的腐蚀层深度与腐蚀时间的关系曲线
[1] Miller R A.Thermal barrier coatings for aircraft engines: History and directions[J]. J. Therm. Spray Technol.,1997, 6: 35
[2] Meier S M, Gupta D K.The evolution of thermal barrier coatings in gas turbine engine applications[J]. J. Eng. Gas Turbines Power, 1994, 116: 250
[3] Padture N P, Gell M, Jordan E H.Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296: 280
[4] Mercer C, Faulhaber S, Evans A G, et al.A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration[J]. Acta Mater., 2005, 53: 1029
[5] Kr?mer S, Yang J, Levi C G, et al.Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS)deposits[J]. J. Am. Ceram. Soc., 2006, 89: 3167
[6] Poerschke D L, Levi C G.Effects of cation substitution and temperature on the interaction between thermal barrier oxides and molten CMAS[J]. J. Eur. Ceram. Soc., 2015, 35: 681
[7] Zhou X, Zou B L, He L M, et al.Hot corrosion behaviour of La2(Zr0.7Ce0.3)2O7 thermal barrier coating ceramics exposed to molten calcium magnesium aluminosilicate at different temperatures[J].Corros. Sci., 2015, 100: 566
[8] Guo H B, Gong S K, Xu H B.Progressin thermal barrier coatings for advanced aeroengines[J]. Mater. China, 2009, 28(Z2): 18
[8] (郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展[J]. 中国材料进展, 2009, 28(Z2): 18)
[9] Goward G W. Progress in coatings for gas turbine airfoils [J]. Surf.Coat. Technol., 1998, 108/109: 73
[10] Ma W, Song F Y, Dong H Y, et al.Thermo physical properties of Y2O3 and Gd2O3 co-doped SrZrO3 thermal barrier coating material[J]. J. Inorg. Mater., 2012, 27: 209
[10] (马文, 宋峰雨, 董红英等. Y2O3与Gd2O3共掺杂SrZrO3热障涂层材料的热物理性能[J]. 无机材料学报, 2012, 27: 209)
[11] Ma W, Mack D E, Vaβen R, et al.Perovskite-type strontium zirconateas a new material for thermal barrier coatings[J]. J. Am. Ceram. Soc., 2008, 91: 2630
[12] Zhao H B, Levi C G, Wadley H N G. Molten silicate interactions with thermal barrier coatings[J]. Sur. Coat. Technol., 2014, 251: 74
[13] Jacobson N S.Thermodynamic properties of some metal oxide-zirconia systems [R]. Cleveland: National Aeronautics and Space Administration, 1989
[14] Schulz U, Saruhan B, Fritscher K, et al.Review on advanced EB-PVD ceramic topcoats for TBC applications[J]. Int. J. Appl. Ceram. Technol., 2004, 1: 302
[15] Garvie R C, Chan S K. Mechanism and thermodynamics of the monoclinic-tetragonal transformations of zirconia [J]. Mater. Sci. Forum, 1988, 34/36: 95
[1] 余春堂,阳颖飞,鲍泽斌,朱圣龙. 先进高温热障涂层用高性能粘接层制备及研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 395-403.
[2] 虞礼嘉,梁文萍,林浩,缪强,黄彪子,崔世宇. 激光重熔YSZ热障涂层950 ℃的热腐蚀行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[3] 王喜忠,吴建颢,彭徽,郭洪波,宫声凯. 电子束物理气相沉积La2Ce2O7热障涂层的高温燃气热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[4] 李新慧,马文,尹轶川,马伯乐,白玉,贾瑞灵,董红英. 液相等离子喷涂SrZrO3热障涂层工艺的研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 41-46.
[5] 蔡丽丽,马文,李新慧,尹轶川,马伯乐,白玉,王俊,董红英. (Gd0.7Sr0.3)ZrO3.35涂层的CaO-MgO-Al2O3-SiO2(CMAS) 腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 47-52.
[6] 陈琛, 郭洪波, 宫声凯. 横向梯度温度场下热障涂层的失效分析[J]. 中国腐蚀与防护学报, 2013, 33(5): 400-406.
[7] 李美姮; 管恒荣 . 热障涂层的性能评价[J]. 中国腐蚀与防护学报, 2007, 27(5): 309-314 .
[8] 李云端; 张春霞; 宫声凯; 徐惠彬 . 单面沉积热障涂层失效模式的研究[J]. 中国腐蚀与防护学报, 2006, 26(3): 146-151 .
[9] 邓畅光; 邝子奇 . 稀土硅铁对TBCs梯度热障涂层组织与性能影响的研究[J]. 中国腐蚀与防护学报, 2002, 22(3): 176-179 .
[10] 陈和兴; 金展鹏; 周克崧 . 热障涂层中NiCrAlY-ZrO2界面特性的研究[J]. 中国腐蚀与防护学报, 2002, 22(2): 95-97 .
[11] 毕晓日方; 郭洪波; 宫声凯; 徐惠彬 . 电子束物理气相沉积热障涂层抗高温腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2002, 22(2): 84-87 .
[12] 李美桓; 孙晓峰; 宫声凯; 张重远; 管恒荣; 胡望宇; 胡壮麒 . EB-PVD热障涂层高温氧化过程中的显微结构和相分析[J]. 中国腐蚀与防护学报, 2002, 22(2): 105-110 .
[13] 张重远; 李美恒; 孙晓峰 . 单晶高温合金热障涂层的循环氧化行为[J]. 中国腐蚀与防护学报, 2002, 22(2): 111-114 .