Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (1): 47-52    DOI: 10.11902/1005.4537.2016.171
  研究报告 本期目录 | 过刊浏览 |
(Gd0.7Sr0.3)ZrO3.35涂层的CaO-MgO-Al2O3-SiO2(CMAS) 腐蚀行为
蔡丽丽1,2,马文1,2(),李新慧1,2,尹轶川1,2,马伯乐1,2,白玉1,2,王俊1,2,董红英2,3
1 内蒙古工业大学材料科学与工程学院 呼和浩特 010051
2 内蒙古工业大学 内蒙古自治区薄膜与涂层重点实验室 呼和浩特 010051
3 内蒙古工业大学化工学院 呼和浩特 010051
Corrosion Resistance of (Gd0.7Sr0.3)ZrO3.35 Coating against CaO-MgO-Al2O3-SiO2 (CMAS)
Lili CAI1,2,Wen MA1,2(),Xinhui LI1,2,Yichuan YIN1,2,Bole MA1,2,Yu BAI1,2,Jun WANG1,2,Hongying DONG2,3
1 School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
2 Inner Mongolia Key Laboratory of Thin Film and Coatings Technology, Inner Mongolia University of Technology, Hohhot 010051, China
3 School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
全文: PDF(1291 KB)   HTML
摘要: 

采用APS制备了 (Gd0.7Sr0.3)ZrO3.35涂层,将涂覆CaO-MgO-Al2O3-SiO2 (CMAS)的 (Gd0.7Sr0.3)ZrO3.35涂层以及 (Gd0.7Sr0.3)ZrO3.35与CMAS混合粉末在1250 ℃分别热处理1,4,8和12 h。使用XRD和SEM分别对腐蚀产物的相组成、显微形貌进行分析。结果表明:(Gd0.7Sr0.3)ZrO3.35涂层抗CMAS腐蚀性能良好,原因是在腐蚀产物层内形成了由磷灰石相Ca2Gd8(SiO4)6O2c-ZrO2组成的致密的阻碍层,有效地抑制了CMAS的进一步腐蚀。

关键词 热障涂层(Gd0.7Sr0.3)ZrO3.35涂层CMAS磷灰石相    
Abstract

(Gd0.7Sr0.3)ZrO3.35 coating was prepared on superalloy In718 by air plasma spray (APS). The corrosion behavior of (Gd0.7Sr0.3)ZrO3.35 coated alloy beneath a deposit of 30 mg/cm2 CMAS was examined in air at 1250 ℃for 1, 4, 8 and 12 h, respectively. While the reaction of the powder mixture of (Gd0.7Sr0.3)ZrO3.35 and CMAS was also studied parallel. The phase constitutes and microstructures of the corrosion products were characterized by XRD and SEM, respectively. The results showed that the (Gd0.7Sr0.3)ZrO3.35 coating had better resistance against CMAS corrosion. The corrosion products formed between CMAS and (Gd0.7Sr0.3)ZrO3.35 coating during the corrosion process consists of apatite Ca2Gd8(SiO4)6O2 and c-ZrO2, which can effectively protect the (Gd0.7Sr0.3)ZrO3.35 coating from further attack by CMAS.

Key wordsthermal barrier coating    (Gd0.7Sr0.3)ZrO3.35 coating    CMAS    apatite
收稿日期: 2016-09-18     
基金资助:国家自然科学基金 (51462026和51672136) 及内蒙古自然科学基金 (2014MS0509)

引用本文:

蔡丽丽,马文,李新慧,尹轶川,马伯乐,白玉,王俊,董红英. (Gd0.7Sr0.3)ZrO3.35涂层的CaO-MgO-Al2O3-SiO2(CMAS) 腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 47-52.
Lili CAI, Wen MA, Xinhui LI, Yichuan YIN, Bole MA, Yu BAI, Jun WANG, Hongying DONG. Corrosion Resistance of (Gd0.7Sr0.3)ZrO3.35 Coating against CaO-MgO-Al2O3-SiO2 (CMAS). Journal of Chinese Society for Corrosion and protection, 2017, 37(1): 47-52.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.171      或      https://www.jcscp.org/CN/Y2017/V37/I1/47

图1  (Gd0.7Sr0.3)ZrO3.35 涂层在1250 ℃下经CMAS腐蚀不同时间后的截面SEM像
图2  (Gd0.7Sr0.3)ZrO3.35涂层在1250 ℃下CMAS腐蚀12 h后的元素面扫描结果
图3  (Gd0.7Sr0.3)ZrO3.35喷涂粉末和涂层的XRD谱
图4  (Gd0.7Sr0.3)ZrO3.35与CMAS混合粉末在1250 ℃热处理不同时间后的XRD谱
图5  (Gd0.7Sr0.3)ZrO3.35涂层在1250 ℃下经CMAS腐蚀不同时间后的截面SEM像
[1] Liu B F, Zhan Z L, Zhai Z Q.Application status of rare earth oxides ceramic materials on the thermal barrier coating[J]. Surf. Technol., 2007, 36(2): 61
[1] (刘保福, 詹肇麟, 翟志清. 稀土氧化物陶瓷材料在热障涂层上的应用现状[J]. 表面技术, 2007, 36(2): 61)
[2] Xiang J Y, Chen S H, Huang J H, et al.Research progresses of rare-earth zirconate ceramic materials for thermal barrier coatings[J]. Mater. Rev., 2012, 26(1): 147
[2] (项建英, 陈树海, 黄继华等. 稀土锆酸盐热障涂层材料研究进展[J]. 材料导报, 2012, 26(1): 147)
[3] Yuan X H, Guo H B, Peng H, et al.High temperature thermo-physical properties of and preparation of a novel thermal barrier coating Gd2Zr2O7-8YSZ[J]. Acta Mater. Compos. Sin., 2013, 30(5): 138
[3] (袁小虎, 郭洪波, 彭徽等. Gd2Zr2O7陶瓷的高温热物理性能及Gd2Zr2O7-8YSZ双涂层制备[J]. 复合材料学报, 2013, 30(5): 138)
[4] Vassen R, Cao X Q, Tietz F, et al.Zirconates as new materials for thermal barrier coatings[J]. J. Am. Ceram. Soc., 2000, 83: 2023
[5] Ma W, Wang D X, Dong H Y, et al.Double rare-earth oxides co-doped strontium zirconate as a new thermal barrier coating material[J]. J. Therm. Spray Technol., 2013, 22: 104
[6] Cao X Q, Vassen R, Tietz F, et al.New double-ceramic-layer thermal barrier coatings based on zirconia-rare earth composite oxides[J]. J. Eur. Ceram. Soc., 2006, 26: 247
[7] Tarasi F, Medraj M, Dolatabadi A, et al.Thermal cycling of suspension plasma sprayed alumina-YSZ coatings containing amorphous phases[J]. J. Am. Ceram. Soc., 2012, 95: 2614
[8] Ma W, Cai L, Dong H, et al.Synthesis and thermophysical properties of Gd2Zr2O7/SrZrO3 composite as a thermal barrier coating material [A]. ITSC[C]. Shanghai: 2016
[9] Cao J.The influence of CMAS to thermal barrier coatings [D]. Beijing: North China Electric Power University, 2013
[9] (曹健. CMAS对热障涂层影响的研究 [D]. 北京: 华北电力大学, 2013)
[10] He J, Liu X J, Liu B, et al.Influence of CMAS infiltration on microstructure of plasma-sprayed YSZ thermal barrier coating[J]. China Surf. Eng., 2012, 25(4): 42
[10] (何箐, 刘新基, 柳波等. CMAS渗入对等离子喷涂YSZ热障涂层形貌的影响[J]. 中国表面工程, 2012, 25(4): 42)
[11] Zhao H B, Levi C G, Wadley H N G. Molten silicate interactions with thermal barrier coatings[J]. Surf. Coat. Technol., 2014, 251: 74
[12] Vidal-Sétif M H, Rio C, Boivin D, et al. Microstructural characterization of the interaction between 8YPSZ (EB-PVD) thermal barrier coatings and a synthetic CAS[J]. Surf. Coat. Technol., 2014, 239: 41
[13] Gledhill A D, Reddy K M, Drexler J M, et al.Mitigation of damage from molten fly ash to air-plasma-sprayed thermal barrier coatings[J]. Mater. Sci. Eng., 2011, A528: 7214
[14] Kr?mer S, Yang J, Levi C G, et al.Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS) deposits[J]. J. Am. Ceram. Soc., 2006, 89: 3167
[15] Drexler J M, Chen C H, Gledhill A D, et al.Plasma sprayed gadolinium zirconate thermal barrier coatings that are resistant to damage by molten Ca-Mg-Al-silicate glass[J]. Surf. Coat. Technol., 2012, 206: 3911
[16] Kr?mer S, Yang J, Levi C G.Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts[J]. J. Am. Ceram. Soc., 2008, 91: 576
[17] Zhou X, Zou B L, He L M, et al.Hot corrosion behaviour of La2(Zr0.7Ce0.3)2O7 thermal barrier coating ceramics exposed to molten calcium magnesium aluminosilicate at different temperatures[J]. Corros. Sci., 2015, 100: 566
[18] Drexler J M, Ortiz A L, Padture N P.Composition effects of thermal barrier coating ceramics on their interaction with molten Ca-Mg-Al-silicate (CMAS) glass[J]. Acta Mater., 2012, 60: 5437
[1] 余春堂,阳颖飞,鲍泽斌,朱圣龙. 先进高温热障涂层用高性能粘接层制备及研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 395-403.
[2] 虞礼嘉,梁文萍,林浩,缪强,黄彪子,崔世宇. 激光重熔YSZ热障涂层950 ℃的热腐蚀行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[3] 王喜忠,吴建颢,彭徽,郭洪波,宫声凯. 电子束物理气相沉积La2Ce2O7热障涂层的高温燃气热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[4] 李新慧,马文,尹轶川,马伯乐,白玉,贾瑞灵,董红英. 液相等离子喷涂SrZrO3热障涂层工艺的研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 41-46.
[5] 张珊榕,董红英,马文,尹轶川,李新慧,白玉,贾瑞灵. 等离子喷涂SrZrO3热障涂层的CaO-MgO-Al2O3-SiO2 (CMAS) 腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 53-57.
[6] 陈琛, 郭洪波, 宫声凯. 横向梯度温度场下热障涂层的失效分析[J]. 中国腐蚀与防护学报, 2013, 33(5): 400-406.
[7] 李美姮; 管恒荣 . 热障涂层的性能评价[J]. 中国腐蚀与防护学报, 2007, 27(5): 309-314 .
[8] 李云端; 张春霞; 宫声凯; 徐惠彬 . 单面沉积热障涂层失效模式的研究[J]. 中国腐蚀与防护学报, 2006, 26(3): 146-151 .
[9] 邓畅光; 邝子奇 . 稀土硅铁对TBCs梯度热障涂层组织与性能影响的研究[J]. 中国腐蚀与防护学报, 2002, 22(3): 176-179 .
[10] 陈和兴; 金展鹏; 周克崧 . 热障涂层中NiCrAlY-ZrO2界面特性的研究[J]. 中国腐蚀与防护学报, 2002, 22(2): 95-97 .
[11] 毕晓日方; 郭洪波; 宫声凯; 徐惠彬 . 电子束物理气相沉积热障涂层抗高温腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2002, 22(2): 84-87 .
[12] 李美桓; 孙晓峰; 宫声凯; 张重远; 管恒荣; 胡望宇; 胡壮麒 . EB-PVD热障涂层高温氧化过程中的显微结构和相分析[J]. 中国腐蚀与防护学报, 2002, 22(2): 105-110 .
[13] 张重远; 李美恒; 孙晓峰 . 单晶高温合金热障涂层的循环氧化行为[J]. 中国腐蚀与防护学报, 2002, 22(2): 111-114 .