Please wait a minute...
中国腐蚀与防护学报  2010, Vol. 30 Issue (1): 62-66    
  研究报告 本期目录 | 过刊浏览 |
冷喷涂Zn-50Al复合涂层在海水中的耐蚀性能
李海祥;李相波;孙明先;王洪仁;黄国胜
中船重工七二五所青岛分部 海洋腐蚀与防护国防科技重点实验室 青岛 266071
CORROSION RESISTANCE OF COLD-SPRAYED Zn-50Al COATINGS IN SEAWATER
LI Haixiang; LI Xiangbo; SUN Mingxian; WANG Hongren; HUANG Guosheng
State Key Laboratory for Marine Corrosion and Protection; Luoyang Ship Materials Research Institute (LSMRI); Qingdao 266071
全文: PDF(1127 KB)  
摘要: 

利用电化学方法和微观测试手段,研究了冷喷涂 Zn-50Al涂层在天然海水环境中的耐蚀性能。研究表明,与纯锌、纯铝涂层相比,对于钢基体,锌铝复合涂层具有更加合适的阴极保护电位,可以大大提高防护寿命;海水环境中涂层表面会形成一层致密稳定的腐蚀产物膜,能有效阻止腐蚀介质向涂层内部的渗透,涂层会保持在一个较低的腐蚀速度。

关键词 冷喷涂Zn/Al涂层电化学耐蚀性能    
Abstract

The corrosion behaviors of the cold-sprayed Zn-50Al coatings in seawater were characterized by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The X-ray diffraction (XRD) results of corrosion products and scanning electron microscopy (SEM) analysis of corrosion surface were used to comparatively investigate the corrosion properties of Zn/Al coatings, and to study the self-sealing mechanism. The results indicated that the better corrosion resistance of cold-sprayed Zn-50Al coatings compared with Zn coatings due to the better self-sealing effect which effectively prevents further seawater corrosion. It has more appropriate cathodal protection potential than Al coatings and low corrosion rate than Zn coatings, the corrosion rate of the Zn-50Al coatings retained a low level with time.

Key wordscold-sprayed    Zn/Al coatings    electrochemistry    corrosion resistance
收稿日期: 2008-11-28     
ZTFLH: 

TG174.44

 
通讯作者: 李相波     E-mail: lixb@sunrui.net
Corresponding author: LI Xiangbo     E-mail: lixb@sunrui.net
作者简介: 李海祥,男,1983年生,硕士生,研究方向为金属腐蚀与防护

引用本文:

李海祥;李相波;孙明先;王洪仁;黄国胜. 冷喷涂Zn-50Al复合涂层在海水中的耐蚀性能[J]. 中国腐蚀与防护学报, 2010, 30(1): 62-66.
LI Hai-Xiang. CORROSION RESISTANCE OF COLD-SPRAYED Zn-50Al COATINGS IN SEAWATER. J Chin Soc Corr Pro, 2010, 30(1): 62-66.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2010/V30/I1/62

[1] Alkimov A P, Kosarev V F, Papyrin A N. A method of cold gas dynamic deposition [J]. Dokl. Akad. Nauk, 1990, 315(5):1062-1065
[2] Rosbrook T, Thomason W H, Byrd J E. Flame sprayed aluminum coatings used on subsea components [J]. Mater. Performance,1989, 28(9): 34-38
[3] Gilmore D L, Dykhuizen R C, Neiser R A, et al. Particle velocity and deposition efficiency in the cold spray process [J]. J. Therm. Spray Technol., 1999, 8(4): 576-582
[4] Song S Z, Tang Z L. An electrochemical impedance analysis on aluminium in 3.5 NaCl solution [J]. J. Chin. Soc. Corros. Prot.,1996, 16(2): 127-132
    (宋思哲, 唐子龙. 工业纯铝在3.5 NaCl溶液中的化学阻抗谱分析 [J]. 中国腐蚀与防护学报, 1996, 16(2): 127-132)
[5] Wei B M. Fundamentals and Application of Metals Corrosion [M]. Beijing: Chemistry Industry Press, 2002
    (魏宝明. 金属腐蚀理论及应用 [M]. 北京:化学工业出版社, 2002)
[6] Urchurtu Chavarin J. Electrochemical investigations of the activation mechanism of aluminum corrosion [J]. Mater. Lett., 1991, 47: 472-479
[7] Li Y, Wei X L, Feng F L. Co-precipitation of nano-crystalline corrosion products on hot dip Zn-Al alloy coating [J]. Trans. Nonferrous Met. Soc. China, 2001, 11(2) : 248-252
    (李焰, 魏绪钧, 冯法伦. 热浸锌铝合金镀层表面纳米晶腐蚀产物共沉积机理 [J]. 中国有色金属学报, 2001, 11(2): 248-252)
[8] Hitzig J, Junttner K, Lorentz W J, et al. AC-impedance measurements on porous aluminum oxide films [J]. Corros.Sci., 1984, 24(3): 945-952
[9] Hitzig J, Junttner K, Lorentz W J. AC-impedance measurements on corroded porous aluminum oxide films [J]. J. Electrochem. Soc., 1986, 133(5): 887-892
[10] Hoar T P, Wood G C. The sealing of porous anodic oxide films on aluminum [J]. Electrochim. Acta, 1962, 7: 333-353
[11] Suay J J,Gimenez E, Rodriguez T, et al. Characterization of anodized and sealed aluminium by EIS [J]. Corros. Sci., 2003, 45(2): 611-626

[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[4] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[5] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[6] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[7] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[8] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[9] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[10] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[11] 付海波, 刘晓茹, 孙媛, 曹大力. 环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[12] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[13] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[14] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[15] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.