|
|
|
| 激光熔覆液压支架立柱防腐耐磨涂层研究进展 |
胡红钰1, 王跃飞1, 严海心1, 史建军2, 吴多利1( ) |
1.扬州大学机械工程学院 江苏省表面强化与功能化制造重点实验室(扬州大学) 扬州 225127 2.南京工程学院工业中心 南京 211167 |
|
| Research Progress on Laser Cladding Anti-corrosion and Wear-resistant Coatings for Hydraulic Support Column |
HU Hongyu1, WANG Yuefei1, YAN Haixin1, SHI Jianjun2, WU Duoli1( ) |
1.Jiangsu Key Laboratory of Surface Strengthening and Functional Manufacturing College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China 2.Industrial Center, Nanjing Institute of Technology, Nanjing 211167, China |
引用本文:
胡红钰, 王跃飞, 严海心, 史建军, 吴多利. 激光熔覆液压支架立柱防腐耐磨涂层研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 25-36.
Hongyu HU,
Yuefei WANG,
Haixin YAN,
Jianjun SHI,
Duoli WU.
Research Progress on Laser Cladding Anti-corrosion and Wear-resistant Coatings for Hydraulic Support Column[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 25-36.
| [1] |
Huo C, Liu T J, Fan B, et al. Study on national coal resources exploration and exploitation layout under carbon neutrality and emission peak settings [J]. Geol. Rev., 2022, 68: 938
|
| [1] |
霍 超, 刘天绩, 樊 斌 等. 双碳背景下我国煤炭资源勘查开发布局研究 [J]. 地质论评, 2022, 68: 938
|
| [2] |
Dong Z P. Selection and influencing factors of coal mining methods and technologies in coal mines [J]. Energy Conserv., 2023, (10): 55
|
| [2] |
董志鹏. 煤矿采煤方法与采煤技术的选择及其影响因素 [J]. 能源与节能, 2023, (10): 55
|
| [3] |
Chen J, Liu Y J, Yuan J T, et al. Analysis on the localized corrosion of hydraulic support after short-term service in coal mine [J]. Mater. Res. Express, 2022, 9: 026501
|
| [4] |
Wang Z H. Corrosion mechanism and protection techniques of columns of hydraulic supports [J]. Min. Proc. Eq., 2011, 39(9): 16
|
| [4] |
王志华. 液压支架立柱的腐蚀机理及其防护 [J]. 矿山机械, 2011, 39(9): 16
|
| [5] |
Pan J Y, Chen H H, Ma F, et al. Corrosion behavior of low alloy steels in high-mineralized mine water [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 253
|
| [5] |
潘俊艳, 陈华辉, 马 峰 等. 低合金钢在高矿化度矿井水环境下的腐蚀行为 [J]. 中国腐蚀与防护学报, 2016, 36: 253
doi: 10.11902/1005.4537.2015.128
|
| [6] |
Cao P, Lei G F, Su C M, et al. Influence of different feeding process on laser cladding remanufacturing of hydraulic support [J]. Mater. Rep., 2021, 35(suppl.): 424
|
| [6] |
曹 鹏, 雷高峰, 苏成明 等. 不同送料工艺对液压支架激光熔覆再制造的影响 [J]. 材料导报, 2021, 35(): 424
|
| [7] |
Chen S N, Lou L Y, Ji G, et al. Microstructure and properties of Fe-based alloy prepared by ultra-high speed laser cladding and conventional laser cladding [J]. Surf. Technol., 2022, 51(12): 358
|
| [7] |
陈书楠, 娄丽艳, 纪 纲 等. 超高速与常规激光熔覆Fe基涂层微观组织及性能研究 [J]. 表面技术, 2022, 51(12): 358
|
| [8] |
Wu M, Pan L, Duan H T, et al. Study on wear resistance and corrosion resistance of HVOF surface coating refabricate for hydraulic support column [J]. Coatings, 2021, 11: 1457
doi: 10.3390/coatings11121457
|
| [9] |
El-Awadi G A. Review of effective techniques for surface engineering material modification for a variety of applications [J]. AIMS Mater. Sci., 2023, 10: 652
|
| [10] |
Giurlani W, Zangari G, Gambinossi F, et al. Electroplating for decorative applications: Recent trends in research and development [J]. Coatings, 2018, 8: 260
doi: 10.3390/coatings8080260
|
| [11] |
Vardelle A, Moreau C, Akedo J, et al. The 2016 thermal spray roadmap [J]. J. Therm. Spray Technol., 2016, 25: 1376
doi: 10.1007/s11666-016-0473-x
|
| [12] |
Zhu L D, Xue P S, Lan Q, et al. Recent research and development status of laser cladding: a review [J]. Opt. Laser Technol., 2021, 138: 106915
doi: 10.1016/j.optlastec.2021.106915
|
| [13] |
Wu D L, Wu H T, Sun H, et al. Research status and development of laser cladding high temperature protective coating [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 725
|
| [13] |
吴多利, 吴昊天, 孙 珲 等. 激光熔覆高温防护涂层研究现状及发展方向 [J]. 中国腐蚀与防护学报, 2023, 43: 725
doi: 10.11902/1005.4537.2023.160
|
| [14] |
Azwan M, Maleque M A, Rahman M M. TIG torch surfacing of metallic materials-a critical review [J]. Trans. IMF, 2019, 97(1): 12
doi: 10.1080/00202967.2019.1551284
|
| [15] |
Wang Y, Li X C. Corrosion mechanism and protection measures of hydraulic support [J]. Coal Mine Mach., 2021, 42(9): 159
|
| [15] |
王 毅, 李小池. 液压支架的腐蚀机理及防护措施 [J]. 煤矿机械, 2021, 42(9): 159
|
| [16] |
Wang L, Sun L, Li L P, et al. Research progress on green remanufacturing and repair technology for mining components [J]. Weld. Technol., 2024, 53(2): 1
|
| [16] |
王 亮, 孙 亮, 李凌鹏 等. 矿用零部件绿色再制造修复技术研究进展 [J]. 焊接技术, 2024, 53(2): 1
|
| [17] |
Cheng X B, Meng H C, Zhang Z Q. Internal surface corrosion reason for hydraulic cylinder of a hydraulic powered roof support [J]. Corros. Prot., 2017, 38: 407
|
| [17] |
程相榜, 孟贺超, 张自强. 液压支架油缸内表面的腐蚀原因 [J]. 腐蚀与防护, 2017, 38: 407
|
| [18] |
Burstein G T, Liu C, Souto R M, et al. Origins of pitting corrosion [J]. Corros. Eng., Sci. Technol., 2004, 39: 25
|
| [19] |
Lei X W, Wang H Y, Wang N, et al. Passivity of martensitic stainless steel in borate buffer solution: Influence of sulfide ion [J]. Appl. Surf. Sci., 2019, 478: 255
doi: 10.1016/j.apsusc.2019.01.250
|
| [20] |
Wang Z, Feng Z, Zhang L. Effect of high temperature on the corrosion behavior and passive film composition of 316 L stainless steel in high H2S-containing environments [J]. Corros. Sci., 2020, 174: 108844
doi: 10.1016/j.corsci.2020.108844
|
| [21] |
Geng Z Z, Zhang Y Z, Du X J, et al. Synergistic effect of S2- and Cl- on corrosion and passivation behavior of 316L austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 797
|
| [21] |
耿真真, 张钰柱, 杜小将 等. S2-和Cl-对316L奥氏体不锈钢的腐蚀钝化行为的协同作用 [J]. 中国腐蚀与防护学报, 2024, 44: 797
doi: 10.11902/1005.4537.2023.236
|
| [22] |
Wang Z, Zhang L, Zhang Z R, et al. Combined effect of pH and H2S on the structure of passive film formed on type 316L stainless steel [J]. Appl. Surf. Sci., 2018, 458: 686
doi: 10.1016/j.apsusc.2018.07.122
|
| [23] |
Zhang H Y. Study on microstructure and properties of cladding layer on inner wall of hydraulic support cylinder [D]. Xi'an: Xi'an University of Science and Technology, 2022
|
| [23] |
张海瑜. 液压支架油缸内壁熔覆层的组织与性能研究 [D]. 西安: 西安科技大学, 2022
|
| [24] |
Zhang L, Guo Z, Jiang X M, et al. Principle of hard chrome electroplating and analysis on structure and performance of chromium layer [J]. Mater. Prot., 2019, 52(4): 142
|
| [24] |
张 理, 郭 震, 蒋晓明 等. 电镀硬铬工艺原理及铬层组织与性能浅析 [J]. 材料保护, 2019, 52(4): 142
|
| [25] |
Kir H, Apay S. Effect of hard chrome plating parameters on the wear resistance of low carbon steel [J]. Mater. Test., 2019, 61: 1082
doi: 10.3139/120.111423
|
| [26] |
Cai T T, Yang Y, Li Y F, et al. Effects of electroplating current density on corrosion resistance of aluminum-magnesium alloy [J]. Surf. Technol., 2017, 46(12): 245
|
| [26] |
蔡婷婷, 杨 云, 李艳芳 等. 电镀电流密度对铝锰合金镀层耐蚀性的影响 [J]. 表面技术, 2017, 46(12): 245
|
| [27] |
Almotairi A, Warkentin A, Farhat Z. Mechanical damage of hard chromium coatings on 416 stainless steel [J]. Eng. Fail. Anal., 2016, 66: 130
doi: 10.1016/j.engfailanal.2016.04.011
|
| [28] |
Ji Z J, Zhang H Y. Research about technology of corrosion treatment process of coal mine hydraulic support column (piston rod) [J]. Coal Mine Mach., 2016, 37(4): 89
|
| [28] |
纪正君, 张海英. 煤矿液压支架立柱(活塞杆)表面耐腐蚀处理工艺研究 [J]. 煤矿机械, 2016, 37(4): 89
|
| [29] |
Wasekar N P, Sundararajan G. Sliding wear behavior of electrodeposited Ni-W alloy and hard chrome coatings [J]. Wear, 2015, 342-343: 340
doi: 10.1016/j.wear.2015.10.003
|
| [30] |
Matthews S, James B. Review of thermal spray coating applications in the steel industry: Part 1—hardware in steel making to the continuous annealing process [J]. J. Therm. Spray Technol., 2010, 19: 1267
doi: 10.1007/s11666-010-9518-8
|
| [31] |
Yang K, Chen C, Xu G Z, et al. Application status and prospects of thermal spraying technology in metallurgical field under harsh service environment [J]. Surf. Technol., 2022, 51(1): 16
|
| [31] |
杨 康, 陈 诚, 徐国正 等. 冶金严苛服役环境中热喷涂技术的应用现状及展望 [J]. 表面技术, 2022, 51(1): 16
|
| [32] |
Zhang J H, Wang Q, Deng B H, et al. Properties and application on the hydraulic support plunger of WC-Cr3C2-M coating deposited by high velocity oxygen fuel spray process [J]. Therm. Spray Technol., 2018, 10(3): 27
|
| [32] |
张景河, 王 群, 邓帮华 等. 超音速火焰喷涂WC-Cr3C2-M涂层性能及其在液压支架立柱上的应用研究 [J]. 热喷涂技术, 2018, 10(3): 27
|
| [33] |
Wang Y, Fang M, Zhang Z M. Study on deposition mechanism of WC coating on 27SiMn steel prepared by HVAF [J]. Hot Work. Technol., 2020, 49(6): 106
|
| [33] |
王 勇, 方 敏, 张治民. HVAF制备27SiMn钢WC涂层沉积机理研究 [J]. 热加工工艺, 2020, 49(6): 106
|
| [34] |
Raj D, Maity S R, Das B. State-of-the-art review on laser cladding process as an in-situ repair technique [J]. Proc. Inst. Mech. Eng., Part E, 2021, 236: 1194
|
| [35] |
Bai Q F, Ouyang C Y, Zhao C J, et al. Microstructure and wear resistance of laser cladding of Fe-based alloy coatings in different areas of cladding layer [J]. Materials, 2021, 14: 2839
doi: 10.3390/ma14112839
|
| [36] |
Chen G, Fan C H, Zeng G S, et al. Influence of cladding layer thickness on structure and properties of laser cladding 316L coating [J]. J. Hunan Univ. (Nat. Sci.), 2018, 45(12): 53
|
| [36] |
陈 刚, 范才河, 曾广胜 等. 熔覆层厚度对激光熔覆316L涂层组织及性能的影响 [J]. 湖南大学学报(自然科学版), 2018, 45(12): 53
|
| [37] |
Fu F X, Zhang Y L, Chang G R, et al. Analysis on the physical mechanism of laser cladding crack and its influence factors [J]. Optik, 2016, 127: 200
doi: 10.1016/j.ijleo.2015.10.043
|
| [38] |
Chen Z X, Zhou H M, Xu C X. Cladding crack in laser cladding: A review [J]. Laser Optoelectron. Prog., 2021, 58: 0700006
|
| [38] |
陈滋鑫, 周后明, 徐采星. 激光熔覆裂纹研究现状 [J]. 激光与光电子学进展, 2021, 58: 0700006
|
| [39] |
Lu Y Z, Lei W N, Ren W B, et al. Crack analysis and control of laser cladding Inconel718 alloy [J]. Surf. Technol., 2020, 49(9): 233
|
| [39] |
鲁耀钟, 雷卫宁, 任维彬 等. 激光熔覆Inconel718合金裂纹分析及裂纹控制研究 [J]. 表面技术, 2020, 49(9): 233
|
| [40] |
Wang R, Wang Y L, Jiang F L, et al. Effect of substrate preheating on crack sensitivity of Al2O3-ZrO2 ceramic coating prepared by laser cladding [J]. Surf. Technol., 2022, 51(3): 342
|
| [40] |
王 冉, 王玉玲, 姜芙林 等. 基体预热对激光熔覆制备Al2O3-ZrO2陶瓷涂层裂纹敏感性的影响 [J]. 表面技术, 2022, 51(3): 342
|
| [41] |
Liu M F. Application of laser cladding and inner wall copper melting technology on hydraulic support [J]. China Energy Environ. Prot., 2018, 40(11): 163
|
| [41] |
刘鸣放. 激光熔覆和内壁熔铜技术在液压支架上的应用 [J]. 能源与环保, 2018, 40(11): 163
|
| [42] |
Liu Y N, Wang Y P, Zhu R F, et al. Research status and development trend of wear-resistant copper alloy [J]. Mater. Mech. Eng., 2021, 45(1): 1
doi: 10.11973/jxgccl202101001
|
| [42] |
刘宇宁, 王云鹏, 祝儒飞 等. 耐磨铜合金的研究现状与发展趋势 [J]. 机械工程材料, 2021, 45(1): 1
doi: 10.11973/jxgccl202101001
|
| [43] |
Tao X S, Zhang H Y, Gong C, et al. Study on microstructure and corrosion behavior of laser cladding coating/inner copper melting coating on hydraulic cylinder [J]. Sci. Technol. Innov., 2022, (33): 34
|
| [43] |
陶小松, 张海瑜, 宫 成 等. 液压油缸内壁激光熔覆层/内壁熔铜层的微观组织及腐蚀行为研究 [J]. 科学技术创新, 2022, (33): 34
|
| [44] |
Jiao Y, Zhang H Y, Xia H G, et al. Study on microstructure and service behavior of inner copper melting coating on hydraulic cylinder [J]. Coal Mine Mach., 2022, 43(9): 99
|
| [44] |
焦阳, 张海瑜, 夏护国 等. 液压油缸内壁熔铜的微观组织及服役行为研究 [J]. 煤矿机械, 2022, 43(9): 99
|
| [45] |
Dong S Y, Ma Y Z, Xu B S, et al. Current status of material for laser cladding [J]. Mater. Rep., 2006, (6): 5
|
| [45] |
董世运, 马运哲, 徐滨士 等. 激光熔覆材料研究现状 [J]. 材料导报, 2006, (6): 5
|
| [46] |
Jian H H. Experimental study of laser cladding on 27SiMn steel surface of hydraulic support column [D]. Xi'an: Xi'an University of Science and Technology, 2017
|
| [46] |
菅含含. 液压支架立柱材料27SiMn钢表面激光熔覆实验研究 [D]. 西安: 西安科技大学, 2017
|
| [47] |
Ouyang C Y, Bai Q F, Yan X G, et al. Microstructure and corrosion properties of laser cladding Fe-based alloy coating on 27SiMn steel surface [J]. Coatings, 2021, 11: 552.
doi: 10.3390/coatings11050552
|
| [48] |
Han C Y, Sun Y N, Xu Y F, et al. Research on wear and electrochemical corrosion properties of laser cladding nickel base alloy [J]. Surf. Technol., 2021, 50(11): 103
|
| [48] |
韩晨阳, 孙耀宁, 徐一飞 等. 激光熔覆镍基合金磨损及电化学腐蚀性能研究 [J]. 表面技术, 2021, 50(11): 103
|
| [49] |
Zhang C Y, Li S, Bao Z B, et al. Stripping and refurbishment of (Ni, Pt) Al coating after service for different oxidation durations [J]. J. Chin. Soc. Corros. Prot, 2025, 45: 201
|
| [49] |
张彩云, 李 帅, 鲍泽斌 等. 氧化不同时间(Ni, Pt)Al涂层的退除及再涂覆行为研究 [J]. 中国腐蚀与防护学报, 2025, 45: 201
doi: 10.11902/1005.4537.2024.226
|
| [50] |
de Sousa J M S, Ratusznei F, Pereira M, et al. Abrasion resistance of Ni-Cr-B-Si coating deposited by laser cladding process [J]. Tribol. Int., 2020, 143: 106002
doi: 10.1016/j.triboint.2019.106002
|
| [51] |
Naghiyan F M, Shoja-Razavi R, Mansouri H A, et al. Evaluation of the hot corrosion behavior of Inconel 625 coatings on the Inconel 738 substrate by laser and TIG cladding techniques [J]. Opt. Laser Technol., 2019, 111: 744
doi: 10.1016/j.optlastec.2018.09.011
|
| [52] |
Ding Y H, Bi W Y, Zhong C, et al. A comparative study on microstructure and properties of ultra-high-speed laser cladding and traditional laser cladding of Inconel625 coatings [J]. Materials, 2022, 15: 6400
doi: 10.3390/ma15186400
|
| [53] |
Ding Y H, Gui W Y, Nie B X, et al. Elimination of elemental segregation by high-speed laser remelting for ultra-high-speed laser cladding Inconel 625 coatings [J]. J. Mater. Res. Technol., 2023, 24: 4118
doi: 10.1016/j.jmrt.2023.04.028
|
| [54] |
Chen Y Q, Yu M, Cao K. et al. Advance on copper-based self-lubricating coatings [J]. Surf. Technol., 2021, 50(2): 91
|
| [54] |
陈雨晴, 余 敏, 曹 开 等. 铜基自润滑涂层的研究进展 [J]. 表面技术, 2021, 50(2): 91
|
| [55] |
Jadhav S D, Dadbakhsh S, Goossens L, et al. Influence of selective laser melting process parameters on texture evolution in pure copper [J]. J. Mater. Process. Technol., 2019, 270: 47
doi: 10.1016/j.jmatprotec.2019.02.022
|
| [56] |
Zhang P L, Liu X P, Lu Y L, et al. Microstructure and wear behavior of Cu-Mo-Si coatings by laser cladding [J]. Appl. Surf. Sci., 2014, 311: 709
doi: 10.1016/j.apsusc.2014.05.141
|
| [57] |
Xu J B. Performance optimization of copper base alloy powder for laser cladding of hydraulic support cylinder holes [J]. MW Met. Form., 2023, (8): 95
|
| [57] |
许金宝. 液压支架油缸内孔激光熔覆用铜基合金粉末性能优化 [J]. 金属加工(热加工), 2023, (8): 95
|
| [58] |
Li Q, Chen F Q, Wang Q, et al. Research progress of laser-cladding WC reinforced Ni-based composite coating [J]. Surf. Technol., 2022, 51(2): 129
|
| [58] |
李 倩, 陈发强, 王 茜 等. 激光熔覆WC增强Ni基复合涂层的研究进展 [J]. 表面技术, 2022, 51(2): 129
|
| [59] |
Li G, Zhang J B, Wen Y, et al. Microstructure and properties of coating of Ni35 powder doped with high carbon ferrochrome powder by laser cladding [J]. Rare Met. Mater. Eng., 2018, 47: 1830
|
| [59] |
李 刚, 张井波, 温 颖 等. Ni35掺杂高碳铬铁粉激光熔覆涂层的组织和性能 [J]. 稀有金属材料与工程, 2018, 47: 1830
|
| [60] |
Ye F X, Shao W X, Ye X C, et al. Microstructure and corrosion behavior of laser-cladding CeO2-doped Ni-based composite coatings on TC4 [J]. J. Chem., 2020, 2020(1): 8690428
|
| [61] |
Wang Q, Yang J, Niu W J, et al. Effect of La2O3 on the microstructure and properties of laser cladding Fe-based JG-8 alloy [J]. Rare Met. Mater. Eng., 2021, 50: 2125
|
| [61] |
王 强, 杨 驹, 牛文娟 等. La2O3对激光熔覆铁基JG-8合金组织与性能的影响 [J]. 稀有金属材料与工程, 2021, 50: 2125
|
| [62] |
Zhou L, Ma G Z, Zhao H C, et al. Research status and prospect of extreme high-speed laser cladding technology [J]. Opt. Laser Technol., 2024, 168: 109800
doi: 10.1016/j.optlastec.2023.109800
|
| [63] |
Yang H Y, Liu C Q, Xiong F, et al. Research progress on preparation of corrosion-resistant coatings by extreme high-speed laser material deposition [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 847
|
| [63] |
杨海云, 刘春泉, 熊 芬 等. 超高速激光熔覆制备耐腐蚀涂层研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 847
doi: 10.11902/1005.4537.2023.369
|
| [64] |
Wang X L, Zhang W L, Hou J, et al. Application research on ultra-high speed laser cladding on shearer gear [J]. MW Met. Form., 2020, (7): 22
|
| [64] |
王先龙, 张维林, 侯 军 等. 超高速激光熔覆在采煤机齿轮上应用研究 [J]. 金属加工(热加工), 2020, (7): 22
|
| [65] |
Zhao F, Guo T M, Li Q, et al. Effect of solution aging treatment on microstructure and properties of Fe‐0.5C‐11Cr corrosion resistant alloy by laser cladding [J]. J. Alloy. Compd., 2022, 922: 166142
doi: 10.1016/j.jallcom.2022.166142
|
| [66] |
Zhang Z H, Sun W L, Huang Y, et al. Microstructures and properties of Fe-based coating prepared by high-speed laser cladding and remelting [J]. Laser Optoelectron. Prog., 2021, 58: 2114009
|
| [66] |
张志虎, 孙文磊, 黄 勇 等. 高速激光熔覆和重熔复合技术制备铁基涂层的组织性能研究 [J]. 激光与光电子学进展, 2021, 58: 2114009
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|