Please wait a minute...
中国腐蚀与防护学报  2026, Vol. 46 Issue (1): 25-36     CSTR: 32134.14.1005.4537.2025.106      DOI: 10.11902/1005.4537.2025.106
  增材制造与腐蚀专题 本期目录 | 过刊浏览 |
激光熔覆液压支架立柱防腐耐磨涂层研究进展
胡红钰1, 王跃飞1, 严海心1, 史建军2, 吴多利1()
1.扬州大学机械工程学院 江苏省表面强化与功能化制造重点实验室(扬州大学) 扬州 225127
2.南京工程学院工业中心 南京 211167
Research Progress on Laser Cladding Anti-corrosion and Wear-resistant Coatings for Hydraulic Support Column
HU Hongyu1, WANG Yuefei1, YAN Haixin1, SHI Jianjun2, WU Duoli1()
1.Jiangsu Key Laboratory of Surface Strengthening and Functional Manufacturing College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
2.Industrial Center, Nanjing Institute of Technology, Nanjing 211167, China
引用本文:

胡红钰, 王跃飞, 严海心, 史建军, 吴多利. 激光熔覆液压支架立柱防腐耐磨涂层研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 25-36.
Hongyu HU, Yuefei WANG, Haixin YAN, Jianjun SHI, Duoli WU. Research Progress on Laser Cladding Anti-corrosion and Wear-resistant Coatings for Hydraulic Support Column[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 25-36.

全文: PDF(4038 KB)   HTML
摘要: 

作为煤矿井下综采作业的核心支护装备,液压支架立柱油缸长期处于高湿、高腐蚀性、高机械载荷的复杂井下工况。这些环境因素促使点蚀、电化学腐蚀的发生,进而导致其表面腐蚀与磨损失效问题,严重威胁矿井的安全生产。本文聚焦激光熔覆表面改性技术,系统总结了热喷涂、电镀、化学镀等传统防护涂层的制备机理及其在耐蚀耐磨性能、界面结合强度、工艺适用性等方面的技术局限性。针对立柱油缸内外表面差异化服役条件,重点探讨了铁基、镍基合金及金属陶瓷复合材料的成分设计与性能适配原则,揭示了熔覆层微观组织与耐蚀耐磨性能的构效关系。最后基于工程应用需求,从涂层材料体系优化和复合制备技术创新两个维度,提出了液压支架关键部件表面功能涂层的发展方向。

关键词 激光熔覆液压支架耐腐蚀性耐磨性研究现状    
Abstract

Hydraulic support is one of the important coal mining machinery equipment for underground coal mining, whilst, the reliability of the hydraulic support has a direct impact on the safety of underground coal mining operations. Which is long-term exposed to complex underground service conditions featuring high humidity, high corrosive media containing chloride ions, hydrogen sulfide, sulfur oxide and various adhesive dusts, as well as high mechanical load. Hence, the surface of hydraulic support column cylinder will be suffered from corrosion wear. Therefore, to improve the reliability of the hydraulic support and extend its service life is the key to ensure safe mining operations. The preparation of high-performance coatings on the surface of hydraulic support columns is an important technical means to solve the problem of corrosion and wear and improve safety and reliability. Coating preparation technology in industrial applications has a variety of forms, which can be directly in the active stent surface preparation of anti-corrosion wear-resistant coatings, enhance the hydraulic stent column cylinder surface performance, to extend the service life, can also be used as a means of remanufacturing, such as to repair damaged cylinders, reduce mining costs, to ensure the sustainable development of resources. This paper first summarizes the common protective coating preparation methods, describes several preparation methods of hydraulic support column protective coatings, including electroplating, thermal spraying, laser cladding, arc melting copper, etc., and discusses the preparation methods, in terms of their advantages and disadvantages. Secondly, the materials with excellent comprehensive performance used in the laser cladding technology are further reviewed, and different coating materials are analyzed from aspects of different processing conditions and different needs of the inner and outer surfaces of the bracket cylinder, including Fe-based self-fusing powder, Ni-based self-fusing powder, Cu-based powder and composite powder. Finally, from the two aspects of coating preparation technology and material system, the anticorrosion and wear-resistant coating of laser cladding hydraulic support column is expected.

Key wordslaser cladding    hydraulic support    corrosion resistance    wear resistance    research status
收稿日期: 2025-04-01      32134.14.1005.4537.2025.106
ZTFLH:  TG174  
基金资助:国家自然科学基金(52101100);国家自然科学基金(52471097);扬州市校合作项目(YZ2023208);扬州大学青蓝工程项目
通讯作者: 吴多利,E-mail:dlwu@yzu.edu.cn,研究方向为高温腐蚀与防护涂层
作者简介: 吴多利,扬州大学机械工程学院副教授,硕士生导师,博士毕业于丹麦科技大学。入选中国科协科技智库青年人才计划、江苏省高层次创新创业引进人才、江苏省“科技副总”、扬州市“绿扬金凤”人才计划、扬州大学“青蓝工程”中青年学术带头人和扬州大学“青蓝工程”优秀青年骨干教师。主要研究领域为新能源发电先进高温腐蚀防护涂层、激光熔覆防腐耐磨涂层关键技术和金属材料的腐蚀与防护等。主持国家自然科学基金面上项目、国家自然科学基金青年基金、江苏省自然科学基金、江苏省高校面上项目等10余项科研项目。在Corrosion Science、Surface & Coatings Technology 等国内外期刊发表论文40余篇,获授权发明专利8件。兼任中国腐蚀与防护学会高温专业委员会委员、中国机械工程学会表面工程分会特邀专家、中国光协激光应用分会青年委员、Corrosion Communications、《表面技术》、《中国腐蚀与防护学报》和《材料开发与应用》等期刊青年编委。
ProcessingAdvantageDisadvantage
Electroplating① Low process costs① Prone to defects
② High hardness② Generating hazardous substances during the process
Thermal spray① Wide choice of coating materials① The coating and the substrate are mainly mechanically bonded, and the bonding strength is weak
② Good overall performance② Cracks may occur when unmelted powder hits the substrate at high speeds
Laser cladding① Metallurgical bonding of the coating to the substrate① The coating is susceptible to cracking due to thermal stress
② Good density
Arc melting copper① Metallurgical bonding of the coating to the substrate① High equipment costs
② Good electrical conductivity, thermal conductivity, self-lubricating properties② Single copper coating performance is weak, need to add other alloying elements
表1  液压支架涂层制备常用工艺优缺点
图1  液压支架立柱外表面腐蚀及涂层修复状况[3]
图2  液压支架立柱内表面腐蚀及涂层修复[23]
图3  镀铬前后416不锈钢基底的表面显微照片[27]
图4  利用超音速火焰喷涂在液压支架用27SiMn钢上制备的WC-10Co-4Cr涂层与基体的界面结合形貌[33]
SubstrateCoating materialThickness / μmHardnessCorrosion test methodCorrosion test results
Electroplating416 stainless steelHard chrome[27]11-194 (Depends on plating time)900HV
27SiMnCu-Cr[28]30-45800HVCopper accelerated acetic acid salt spray (CASS)Meeting production needs
Thermal45 steelWC10Co4Cr[8]420-450(1163.6 ± 12.4)HV300CASSRusting after 120 h
spraying
27SiMnWC-Cr3C2-M[32]300-350951.4HV0.3CASSNo visible corrosion
spots after 312 h
Hydrogen sulfideNo visible corrosion
corrosion testspots after 240 h
Sulfur dioxideNo visible corrosion
corrosion testspots after 312 h
27SiMnWC[33]1200HV[27]
Laser cladding27SiMnFe-based alloy500.1HV0.3
powder[35]
27SiMn316L[36]1000400HV0.23.5%NaCl electrochemicalEcorr = 0.053 V
corrosionRp = 22.881 Ω·cm²
Icorr = 1.018 A/cm²
Arc melting27SiMnAluminum200HV0.53.5%NaCl electrochemicalEcorr = -0.53 V
copperbronze[43]corrosionDense holes in the
surface of the coating
CASSCorrosion material
after 100 h
27SiMnAluminum540HV0.53.5%NaCl electrochemicalEcorr = -0.85 V
bronze[44]corrosion
Aluminum bronze +550HV0.5Ecorr = -0.8 V
Ni、Mn[44]
Aluminum bronze +550HV0.5Ecorr = -0.6 V
Si[44]
表2  液压支架防护涂层的应用案例
图5  激光熔覆涂层材料体系
图6  铁基涂层[47],镍基涂层[52],铜基涂层[56]和Ni25/CeO2复合涂层[60]微观形貌
图7  Ni-Cr-B-Si涂层中心区域微观结构[50]
[1] Huo C, Liu T J, Fan B, et al. Study on national coal resources exploration and exploitation layout under carbon neutrality and emission peak settings [J]. Geol. Rev., 2022, 68: 938
[1] 霍 超, 刘天绩, 樊 斌 等. 双碳背景下我国煤炭资源勘查开发布局研究 [J]. 地质论评, 2022, 68: 938
[2] Dong Z P. Selection and influencing factors of coal mining methods and technologies in coal mines [J]. Energy Conserv., 2023, (10): 55
[2] 董志鹏. 煤矿采煤方法与采煤技术的选择及其影响因素 [J]. 能源与节能, 2023, (10): 55
[3] Chen J, Liu Y J, Yuan J T, et al. Analysis on the localized corrosion of hydraulic support after short-term service in coal mine [J]. Mater. Res. Express, 2022, 9: 026501
[4] Wang Z H. Corrosion mechanism and protection techniques of columns of hydraulic supports [J]. Min. Proc. Eq., 2011, 39(9): 16
[4] 王志华. 液压支架立柱的腐蚀机理及其防护 [J]. 矿山机械, 2011, 39(9): 16
[5] Pan J Y, Chen H H, Ma F, et al. Corrosion behavior of low alloy steels in high-mineralized mine water [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 253
[5] 潘俊艳, 陈华辉, 马 峰 等. 低合金钢在高矿化度矿井水环境下的腐蚀行为 [J]. 中国腐蚀与防护学报, 2016, 36: 253
doi: 10.11902/1005.4537.2015.128
[6] Cao P, Lei G F, Su C M, et al. Influence of different feeding process on laser cladding remanufacturing of hydraulic support [J]. Mater. Rep., 2021, 35(suppl.): 424
[6] 曹 鹏, 雷高峰, 苏成明 等. 不同送料工艺对液压支架激光熔覆再制造的影响 [J]. 材料导报, 2021, 35(): 424
[7] Chen S N, Lou L Y, Ji G, et al. Microstructure and properties of Fe-based alloy prepared by ultra-high speed laser cladding and conventional laser cladding [J]. Surf. Technol., 2022, 51(12): 358
[7] 陈书楠, 娄丽艳, 纪 纲 等. 超高速与常规激光熔覆Fe基涂层微观组织及性能研究 [J]. 表面技术, 2022, 51(12): 358
[8] Wu M, Pan L, Duan H T, et al. Study on wear resistance and corrosion resistance of HVOF surface coating refabricate for hydraulic support column [J]. Coatings, 2021, 11: 1457
doi: 10.3390/coatings11121457
[9] El-Awadi G A. Review of effective techniques for surface engineering material modification for a variety of applications [J]. AIMS Mater. Sci., 2023, 10: 652
[10] Giurlani W, Zangari G, Gambinossi F, et al. Electroplating for decorative applications: Recent trends in research and development [J]. Coatings, 2018, 8: 260
doi: 10.3390/coatings8080260
[11] Vardelle A, Moreau C, Akedo J, et al. The 2016 thermal spray roadmap [J]. J. Therm. Spray Technol., 2016, 25: 1376
doi: 10.1007/s11666-016-0473-x
[12] Zhu L D, Xue P S, Lan Q, et al. Recent research and development status of laser cladding: a review [J]. Opt. Laser Technol., 2021, 138: 106915
doi: 10.1016/j.optlastec.2021.106915
[13] Wu D L, Wu H T, Sun H, et al. Research status and development of laser cladding high temperature protective coating [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 725
[13] 吴多利, 吴昊天, 孙 珲 等. 激光熔覆高温防护涂层研究现状及发展方向 [J]. 中国腐蚀与防护学报, 2023, 43: 725
doi: 10.11902/1005.4537.2023.160
[14] Azwan M, Maleque M A, Rahman M M. TIG torch surfacing of metallic materials-a critical review [J]. Trans. IMF, 2019, 97(1): 12
doi: 10.1080/00202967.2019.1551284
[15] Wang Y, Li X C. Corrosion mechanism and protection measures of hydraulic support [J]. Coal Mine Mach., 2021, 42(9): 159
[15] 王 毅, 李小池. 液压支架的腐蚀机理及防护措施 [J]. 煤矿机械, 2021, 42(9): 159
[16] Wang L, Sun L, Li L P, et al. Research progress on green remanufacturing and repair technology for mining components [J]. Weld. Technol., 2024, 53(2): 1
[16] 王 亮, 孙 亮, 李凌鹏 等. 矿用零部件绿色再制造修复技术研究进展 [J]. 焊接技术, 2024, 53(2): 1
[17] Cheng X B, Meng H C, Zhang Z Q. Internal surface corrosion reason for hydraulic cylinder of a hydraulic powered roof support [J]. Corros. Prot., 2017, 38: 407
[17] 程相榜, 孟贺超, 张自强. 液压支架油缸内表面的腐蚀原因 [J]. 腐蚀与防护, 2017, 38: 407
[18] Burstein G T, Liu C, Souto R M, et al. Origins of pitting corrosion [J]. Corros. Eng., Sci. Technol., 2004, 39: 25
[19] Lei X W, Wang H Y, Wang N, et al. Passivity of martensitic stainless steel in borate buffer solution: Influence of sulfide ion [J]. Appl. Surf. Sci., 2019, 478: 255
doi: 10.1016/j.apsusc.2019.01.250
[20] Wang Z, Feng Z, Zhang L. Effect of high temperature on the corrosion behavior and passive film composition of 316 L stainless steel in high H2S-containing environments [J]. Corros. Sci., 2020, 174: 108844
doi: 10.1016/j.corsci.2020.108844
[21] Geng Z Z, Zhang Y Z, Du X J, et al. Synergistic effect of S2- and Cl- on corrosion and passivation behavior of 316L austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 797
[21] 耿真真, 张钰柱, 杜小将 等. S2-和Cl-对316L奥氏体不锈钢的腐蚀钝化行为的协同作用 [J]. 中国腐蚀与防护学报, 2024, 44: 797
doi: 10.11902/1005.4537.2023.236
[22] Wang Z, Zhang L, Zhang Z R, et al. Combined effect of pH and H2S on the structure of passive film formed on type 316L stainless steel [J]. Appl. Surf. Sci., 2018, 458: 686
doi: 10.1016/j.apsusc.2018.07.122
[23] Zhang H Y. Study on microstructure and properties of cladding layer on inner wall of hydraulic support cylinder [D]. Xi'an: Xi'an University of Science and Technology, 2022
[23] 张海瑜. 液压支架油缸内壁熔覆层的组织与性能研究 [D]. 西安: 西安科技大学, 2022
[24] Zhang L, Guo Z, Jiang X M, et al. Principle of hard chrome electroplating and analysis on structure and performance of chromium layer [J]. Mater. Prot., 2019, 52(4): 142
[24] 张 理, 郭 震, 蒋晓明 等. 电镀硬铬工艺原理及铬层组织与性能浅析 [J]. 材料保护, 2019, 52(4): 142
[25] Kir H, Apay S. Effect of hard chrome plating parameters on the wear resistance of low carbon steel [J]. Mater. Test., 2019, 61: 1082
doi: 10.3139/120.111423
[26] Cai T T, Yang Y, Li Y F, et al. Effects of electroplating current density on corrosion resistance of aluminum-magnesium alloy [J]. Surf. Technol., 2017, 46(12): 245
[26] 蔡婷婷, 杨 云, 李艳芳 等. 电镀电流密度对铝锰合金镀层耐蚀性的影响 [J]. 表面技术, 2017, 46(12): 245
[27] Almotairi A, Warkentin A, Farhat Z. Mechanical damage of hard chromium coatings on 416 stainless steel [J]. Eng. Fail. Anal., 2016, 66: 130
doi: 10.1016/j.engfailanal.2016.04.011
[28] Ji Z J, Zhang H Y. Research about technology of corrosion treatment process of coal mine hydraulic support column (piston rod) [J]. Coal Mine Mach., 2016, 37(4): 89
[28] 纪正君, 张海英. 煤矿液压支架立柱(活塞杆)表面耐腐蚀处理工艺研究 [J]. 煤矿机械, 2016, 37(4): 89
[29] Wasekar N P, Sundararajan G. Sliding wear behavior of electrodeposited Ni-W alloy and hard chrome coatings [J]. Wear, 2015, 342-343: 340
doi: 10.1016/j.wear.2015.10.003
[30] Matthews S, James B. Review of thermal spray coating applications in the steel industry: Part 1—hardware in steel making to the continuous annealing process [J]. J. Therm. Spray Technol., 2010, 19: 1267
doi: 10.1007/s11666-010-9518-8
[31] Yang K, Chen C, Xu G Z, et al. Application status and prospects of thermal spraying technology in metallurgical field under harsh service environment [J]. Surf. Technol., 2022, 51(1): 16
[31] 杨 康, 陈 诚, 徐国正 等. 冶金严苛服役环境中热喷涂技术的应用现状及展望 [J]. 表面技术, 2022, 51(1): 16
[32] Zhang J H, Wang Q, Deng B H, et al. Properties and application on the hydraulic support plunger of WC-Cr3C2-M coating deposited by high velocity oxygen fuel spray process [J]. Therm. Spray Technol., 2018, 10(3): 27
[32] 张景河, 王 群, 邓帮华 等. 超音速火焰喷涂WC-Cr3C2-M涂层性能及其在液压支架立柱上的应用研究 [J]. 热喷涂技术, 2018, 10(3): 27
[33] Wang Y, Fang M, Zhang Z M. Study on deposition mechanism of WC coating on 27SiMn steel prepared by HVAF [J]. Hot Work. Technol., 2020, 49(6): 106
[33] 王 勇, 方 敏, 张治民. HVAF制备27SiMn钢WC涂层沉积机理研究 [J]. 热加工工艺, 2020, 49(6): 106
[34] Raj D, Maity S R, Das B. State-of-the-art review on laser cladding process as an in-situ repair technique [J]. Proc. Inst. Mech. Eng., Part E, 2021, 236: 1194
[35] Bai Q F, Ouyang C Y, Zhao C J, et al. Microstructure and wear resistance of laser cladding of Fe-based alloy coatings in different areas of cladding layer [J]. Materials, 2021, 14: 2839
doi: 10.3390/ma14112839
[36] Chen G, Fan C H, Zeng G S, et al. Influence of cladding layer thickness on structure and properties of laser cladding 316L coating [J]. J. Hunan Univ. (Nat. Sci.), 2018, 45(12): 53
[36] 陈 刚, 范才河, 曾广胜 等. 熔覆层厚度对激光熔覆316L涂层组织及性能的影响 [J]. 湖南大学学报(自然科学版), 2018, 45(12): 53
[37] Fu F X, Zhang Y L, Chang G R, et al. Analysis on the physical mechanism of laser cladding crack and its influence factors [J]. Optik, 2016, 127: 200
doi: 10.1016/j.ijleo.2015.10.043
[38] Chen Z X, Zhou H M, Xu C X. Cladding crack in laser cladding: A review [J]. Laser Optoelectron. Prog., 2021, 58: 0700006
[38] 陈滋鑫, 周后明, 徐采星. 激光熔覆裂纹研究现状 [J]. 激光与光电子学进展, 2021, 58: 0700006
[39] Lu Y Z, Lei W N, Ren W B, et al. Crack analysis and control of laser cladding Inconel718 alloy [J]. Surf. Technol., 2020, 49(9): 233
[39] 鲁耀钟, 雷卫宁, 任维彬 等. 激光熔覆Inconel718合金裂纹分析及裂纹控制研究 [J]. 表面技术, 2020, 49(9): 233
[40] Wang R, Wang Y L, Jiang F L, et al. Effect of substrate preheating on crack sensitivity of Al2O3-ZrO2 ceramic coating prepared by laser cladding [J]. Surf. Technol., 2022, 51(3): 342
[40] 王 冉, 王玉玲, 姜芙林 等. 基体预热对激光熔覆制备Al2O3-ZrO2陶瓷涂层裂纹敏感性的影响 [J]. 表面技术, 2022, 51(3): 342
[41] Liu M F. Application of laser cladding and inner wall copper melting technology on hydraulic support [J]. China Energy Environ. Prot., 2018, 40(11): 163
[41] 刘鸣放. 激光熔覆和内壁熔铜技术在液压支架上的应用 [J]. 能源与环保, 2018, 40(11): 163
[42] Liu Y N, Wang Y P, Zhu R F, et al. Research status and development trend of wear-resistant copper alloy [J]. Mater. Mech. Eng., 2021, 45(1): 1
doi: 10.11973/jxgccl202101001
[42] 刘宇宁, 王云鹏, 祝儒飞 等. 耐磨铜合金的研究现状与发展趋势 [J]. 机械工程材料, 2021, 45(1): 1
doi: 10.11973/jxgccl202101001
[43] Tao X S, Zhang H Y, Gong C, et al. Study on microstructure and corrosion behavior of laser cladding coating/inner copper melting coating on hydraulic cylinder [J]. Sci. Technol. Innov., 2022, (33): 34
[43] 陶小松, 张海瑜, 宫 成 等. 液压油缸内壁激光熔覆层/内壁熔铜层的微观组织及腐蚀行为研究 [J]. 科学技术创新, 2022, (33): 34
[44] Jiao Y, Zhang H Y, Xia H G, et al. Study on microstructure and service behavior of inner copper melting coating on hydraulic cylinder [J]. Coal Mine Mach., 2022, 43(9): 99
[44] 焦阳, 张海瑜, 夏护国 等. 液压油缸内壁熔铜的微观组织及服役行为研究 [J]. 煤矿机械, 2022, 43(9): 99
[45] Dong S Y, Ma Y Z, Xu B S, et al. Current status of material for laser cladding [J]. Mater. Rep., 2006, (6): 5
[45] 董世运, 马运哲, 徐滨士 等. 激光熔覆材料研究现状 [J]. 材料导报, 2006, (6): 5
[46] Jian H H. Experimental study of laser cladding on 27SiMn steel surface of hydraulic support column [D]. Xi'an: Xi'an University of Science and Technology, 2017
[46] 菅含含. 液压支架立柱材料27SiMn钢表面激光熔覆实验研究 [D]. 西安: 西安科技大学, 2017
[47] Ouyang C Y, Bai Q F, Yan X G, et al. Microstructure and corrosion properties of laser cladding Fe-based alloy coating on 27SiMn steel surface [J]. Coatings, 2021, 11: 552.
doi: 10.3390/coatings11050552
[48] Han C Y, Sun Y N, Xu Y F, et al. Research on wear and electrochemical corrosion properties of laser cladding nickel base alloy [J]. Surf. Technol., 2021, 50(11): 103
[48] 韩晨阳, 孙耀宁, 徐一飞 等. 激光熔覆镍基合金磨损及电化学腐蚀性能研究 [J]. 表面技术, 2021, 50(11): 103
[49] Zhang C Y, Li S, Bao Z B, et al. Stripping and refurbishment of (Ni, Pt) Al coating after service for different oxidation durations [J]. J. Chin. Soc. Corros. Prot, 2025, 45: 201
[49] 张彩云, 李 帅, 鲍泽斌 等. 氧化不同时间(Ni, Pt)Al涂层的退除及再涂覆行为研究 [J]. 中国腐蚀与防护学报, 2025, 45: 201
doi: 10.11902/1005.4537.2024.226
[50] de Sousa J M S, Ratusznei F, Pereira M, et al. Abrasion resistance of Ni-Cr-B-Si coating deposited by laser cladding process [J]. Tribol. Int., 2020, 143: 106002
doi: 10.1016/j.triboint.2019.106002
[51] Naghiyan F M, Shoja-Razavi R, Mansouri H A, et al. Evaluation of the hot corrosion behavior of Inconel 625 coatings on the Inconel 738 substrate by laser and TIG cladding techniques [J]. Opt. Laser Technol., 2019, 111: 744
doi: 10.1016/j.optlastec.2018.09.011
[52] Ding Y H, Bi W Y, Zhong C, et al. A comparative study on microstructure and properties of ultra-high-speed laser cladding and traditional laser cladding of Inconel625 coatings [J]. Materials, 2022, 15: 6400
doi: 10.3390/ma15186400
[53] Ding Y H, Gui W Y, Nie B X, et al. Elimination of elemental segregation by high-speed laser remelting for ultra-high-speed laser cladding Inconel 625 coatings [J]. J. Mater. Res. Technol., 2023, 24: 4118
doi: 10.1016/j.jmrt.2023.04.028
[54] Chen Y Q, Yu M, Cao K. et al. Advance on copper-based self-lubricating coatings [J]. Surf. Technol., 2021, 50(2): 91
[54] 陈雨晴, 余 敏, 曹 开 等. 铜基自润滑涂层的研究进展 [J]. 表面技术, 2021, 50(2): 91
[55] Jadhav S D, Dadbakhsh S, Goossens L, et al. Influence of selective laser melting process parameters on texture evolution in pure copper [J]. J. Mater. Process. Technol., 2019, 270: 47
doi: 10.1016/j.jmatprotec.2019.02.022
[56] Zhang P L, Liu X P, Lu Y L, et al. Microstructure and wear behavior of Cu-Mo-Si coatings by laser cladding [J]. Appl. Surf. Sci., 2014, 311: 709
doi: 10.1016/j.apsusc.2014.05.141
[57] Xu J B. Performance optimization of copper base alloy powder for laser cladding of hydraulic support cylinder holes [J]. MW Met. Form., 2023, (8): 95
[57] 许金宝. 液压支架油缸内孔激光熔覆用铜基合金粉末性能优化 [J]. 金属加工(热加工), 2023, (8): 95
[58] Li Q, Chen F Q, Wang Q, et al. Research progress of laser-cladding WC reinforced Ni-based composite coating [J]. Surf. Technol., 2022, 51(2): 129
[58] 李 倩, 陈发强, 王 茜 等. 激光熔覆WC增强Ni基复合涂层的研究进展 [J]. 表面技术, 2022, 51(2): 129
[59] Li G, Zhang J B, Wen Y, et al. Microstructure and properties of coating of Ni35 powder doped with high carbon ferrochrome powder by laser cladding [J]. Rare Met. Mater. Eng., 2018, 47: 1830
[59] 李 刚, 张井波, 温 颖 等. Ni35掺杂高碳铬铁粉激光熔覆涂层的组织和性能 [J]. 稀有金属材料与工程, 2018, 47: 1830
[60] Ye F X, Shao W X, Ye X C, et al. Microstructure and corrosion behavior of laser-cladding CeO2-doped Ni-based composite coatings on TC4 [J]. J. Chem., 2020, 2020(1): 8690428
[61] Wang Q, Yang J, Niu W J, et al. Effect of La2O3 on the microstructure and properties of laser cladding Fe-based JG-8 alloy [J]. Rare Met. Mater. Eng., 2021, 50: 2125
[61] 王 强, 杨 驹, 牛文娟 等. La2O3对激光熔覆铁基JG-8合金组织与性能的影响 [J]. 稀有金属材料与工程, 2021, 50: 2125
[62] Zhou L, Ma G Z, Zhao H C, et al. Research status and prospect of extreme high-speed laser cladding technology [J]. Opt. Laser Technol., 2024, 168: 109800
doi: 10.1016/j.optlastec.2023.109800
[63] Yang H Y, Liu C Q, Xiong F, et al. Research progress on preparation of corrosion-resistant coatings by extreme high-speed laser material deposition [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 847
[63] 杨海云, 刘春泉, 熊 芬 等. 超高速激光熔覆制备耐腐蚀涂层研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 847
doi: 10.11902/1005.4537.2023.369
[64] Wang X L, Zhang W L, Hou J, et al. Application research on ultra-high speed laser cladding on shearer gear [J]. MW Met. Form., 2020, (7): 22
[64] 王先龙, 张维林, 侯 军 等. 超高速激光熔覆在采煤机齿轮上应用研究 [J]. 金属加工(热加工), 2020, (7): 22
[65] Zhao F, Guo T M, Li Q, et al. Effect of solution aging treatment on microstructure and properties of Fe‐0.5C‐11Cr corrosion resistant alloy by laser cladding [J]. J. Alloy. Compd., 2022, 922: 166142
doi: 10.1016/j.jallcom.2022.166142
[66] Zhang Z H, Sun W L, Huang Y, et al. Microstructures and properties of Fe-based coating prepared by high-speed laser cladding and remelting [J]. Laser Optoelectron. Prog., 2021, 58: 2114009
[66] 张志虎, 孙文磊, 黄 勇 等. 高速激光熔覆和重熔复合技术制备铁基涂层的组织性能研究 [J]. 激光与光电子学进展, 2021, 58: 2114009
[1] 周丽, 曹晓蝶, 来佑彬, 丁旺旺, 韦博鑫, 吴嘉俊. 热处理工艺对增材制造金属零件腐蚀行为影响的研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 37-48.
[2] 苏宝献, 高如心, 朱国强, 姜博涛, 王斌斌, 刘琛, 于永生, 王亮, 苏彦庆. 热处理工艺对电子束熔丝沉积Ti-6Al-3Nb-2Zr-1Mo合金微观组织与腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2026, 46(1): 81-91.
[3] 丁昊, 杜凌霄, 舒琴, 曹甫洋, 谢云, 彭晓. WC含量对激光熔覆AlCoCrFeNi2.1 共晶高熵合金涂层磨损和腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2026, 46(1): 126-136.
[4] 刘海龙, 王力, 赵卫国, 韩嘉彧, 王轻松, 龙佳怡, 贺星, 高黎黎, 王华, 胡平. 钼合金表面Si-ZrB2-Ti-Cr多元涂层的激光熔覆制备及高温抗氧化性能[J]. 中国腐蚀与防护学报, 2026, 46(1): 155-164.
[5] 纪云瀚, 王勤英, 郑杰, 李怡璇, 西宇辰, 董立谨, 张杨飞, 白树林. 无磁钻铤不锈钢激光熔覆层的微观组织与腐蚀磨损特性[J]. 中国腐蚀与防护学报, 2026, 46(1): 175-185.
[6] 佟向瑜, 徐玮辰, 王秀通, 王优强, 段继周. 常用钛合金焊接接头显微组织结构及对材料性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1161-1174.
[7] 李萍, 时慧杰, 裴继斌, 王子健, 曹铁山, 程从前, 赵杰. 纳秒激光辐照对17-4PH不锈钢电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1417-1424.
[8] 孙方红, 任延杰, 宋文卿. 42CrMo钢表面激光熔覆涂层的研究现状及进展[J]. 中国腐蚀与防护学报, 2025, 45(4): 849-858.
[9] 郑子龙, 孙海静, 薛伟海, 陈国亮, 周欣, 王进军, 段德莉, 孙杰. 聚四氟乙烯对风电叶片聚氨酯涂层耐磨与耐雨蚀性能影响及损伤机制研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 881-893.
[10] 李茂, 邓轲, 陈衍祥, 刘中豪, 李尚, 郭宇婷, 董选普, 曹华堂. N2 流量和靶基距对多弧离子镀沉积AlSiN纳米复合涂层的微观组织及耐腐蚀性能影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1041-1050.
[11] 冉仁豪, 单慧琳, 张鹏杰, 汪冬梅, 斯佳佳, 徐光青, 吕珺. 表层镁合金化NdFeB磁体的制备及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2025, 45(4): 1117-1126.
[12] 岳锐, 刘咏咏, 杨丽景, 朱兴隆, 陈权昕, 阿那尔, 张青科, 宋振纶. 激光重熔对生物可降解Zn-0.4Mn合金微观结构和性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1127-1134.
[13] 李祥东, 刘昌昊, 张弛, 陈文娟, 崔宸悦, 朱勇文, 王姝舒. WC-Zn复合镀层的工艺设计及其性能研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 795-802.
[14] 赵立佳, 崔新宇, 王吉强, 熊天英. 冷喷涂B4C/Al复合涂层在硼酸溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 164-172.
[15] 杨海云, 刘春泉, 熊芬, 陈敏纳, 谢岳林, 彭龙生, 孙胜, 刘海洲. 超高速激光熔覆制备耐腐蚀涂层研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 847-862.