Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (6): 1679-1688     CSTR: 32134.14.1005.4537.2025.014      DOI: 10.11902/1005.4537.2025.014
  研究报告 本期目录 | 过刊浏览 |
高温高湿环境下玻璃纤维增强乙烯基酯复合材料的失效行为研究
孙欣蕾1,2, 曹京宜3, 殷文昌3, 方志刚3, 王峰1(), 王兴奇2, 杨延格2()
1 沈阳工业大学材料科学与工程学院 沈阳 110870
2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3 中国人民解放军92228部队 北京 100072
Failure Behavior of Vinyl Ester Composites in High Temperature and High Humidity Environments
SUN Xinlei1,2, CAO Jingyi3, YIN Wenchang3, FANG Zhigang3, WANG Feng1(), WANG Xingqi2, YANG Yange2()
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Unit 92228, People's Liberation Army, Beijing 100072, China
引用本文:

孙欣蕾, 曹京宜, 殷文昌, 方志刚, 王峰, 王兴奇, 杨延格. 高温高湿环境下玻璃纤维增强乙烯基酯复合材料的失效行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1679-1688.
Xinlei SUN, Jingyi CAO, Wenchang YIN, Zhigang FANG, Feng WANG, Xingqi WANG, Yange YANG. Failure Behavior of Vinyl Ester Composites in High Temperature and High Humidity Environments[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1679-1688.

全文: PDF(12557 KB)   HTML
摘要: 

通过拉伸、压缩、弯曲、冲击等力学性能检测,结合形貌表征、红外光谱分析、吸湿率测试等方法研究了玻璃纤维增强乙烯基酯复合材料(GFRP)在60 ℃-80%RH、60 ℃-95%RH、80 ℃-95%RH 3种高温高湿环境下的失效行为。结果表明,高温高湿环境下,湿度主要影响了GFRP材料的饱和吸湿率,温度是水扩散系数增加的主因,从而导致80 ℃-95%RH下GFRP材料的损伤最严重。60 ℃-80%RH和60 ℃-95%RH两种高温高湿环境下,GFRP的老化程度并未出现明显差异,在拉伸、弯曲、压缩、冲击性能测试中,压缩强度的下降最为显著,仅老化49 d后,两种环境下GFRP压缩强度分别下降了18.18%和22.22%,失效的主要原因是材料吸水导致树脂基体溶胀和塑化。80 ℃-95%RH环境下,冲击强度下降最为显著,仅老化49 d后便下降了51.43%,失效的主要原因是树脂/纤维界面的破坏。

关键词 高温高湿复合材料老化力学性能失效机理    
Abstract

The failure behavior of glass fiber reinforced polymer (GFRP) in high temperature and high humidity environments, i.e. 60 oC-80%RH, 60°C-95%RH, and 80 oC-95%RH was investigated by tensile, compressive, flexural, and impact mechanical property tests, combined with morphological characterization, infrared spectral analysis, and moisture absorption rate test. The results show that in high temperature and high humidity environments, humidity mainly affects the saturated water absorption of GFRP, and temperature mainly contributes to the increasing water diffusion coefficient, which leads to the most serious damage to GFRP at 80 oC-95% RH. The aging degree of GFRP shows no obvious difference in the other two environments of 60 oC-80%RH and 60 oC-95%RH. Among the results of tensile, bending, compression, and impact performance test, those of the compression test reveals that the most significant decline in compressive strength of GFRP immerged at 60 oC-80%RH and 60 oC-95%RH, decreasing by 18.18% and 22.22% respectively after 49 d of aging. This may be attributed to the dissolution and plasticization of the resin matrix after water absorption by GFRP; Those of the impact strength test shows that the most significant decrease in impact strength of GFRP occurred at 80 oC-95% RH, decreasing by 51.43% after 49 d of aging, which is mainly due to the destruction of the resin/fiber interface.

Key wordshigh temperature and high humidity    composite    aging    mechanical property    failure mechanism
收稿日期: 2025-01-09      32134.14.1005.4537.2025.014
ZTFLH:  TG172.3  
通讯作者: 杨延格,E-mail:ygyang@imr.ac.cn,研究方向为金属材料的海洋腐蚀与防护王峰,E-mail:wf9709@126.com,研究方向为轻质合金及轻量化技术研究与应用
Corresponding author: YANG Yange, E-mail: ygyang@imr.ac.cnWANG Feng, E-mail: wf9709@126.com
作者简介: 孙欣蕾,女,1999年生,硕士生
Experimental conditionAging time / d
60 oC-80%RH0, 7, 21, 35, 49
60 oC-95%RH0, 7, 21, 35, 49
80 oC-95%RH0, 10, 21, 30, 49
表1  实验条件与老化时间
图1  60 ℃-80%RH环境下GFRP样品老化不同时间后的显微形貌
图2  60 ℃-95%RH环境下GFRP样品老化不同时间后的显微形貌
图3  80 ℃-95%RH环境下GFRP样品老化不同时间后的显微形貌
图4  GFRP样品的拉伸性能随老化时间的变化
图5  GFRP样品的压缩性能随老化时间的变化
图6  GFRP样品的弯曲性能随老化时间的变化
图7  GFRP样品的冲击性能随老化时间的变化
图8  GFRP样品老化49 d后力学强度下降率
图9  乙烯基酯树脂的结构式
图10  GFRP样品老化49 d后红外光谱图
图11  GFRP样品吸湿率随老化时间的变化
Experimental conditionEffective equilibrium water uptake (M) / %Diffusion coefficient(D) / mm2·h-1

Coefficient of

determination (R2)

60 oC-80%RH0.160.00730.9697
60 oC-95%RH0.280.00790.9893
80 oC-95%RH0.320.01050.9986
表2  Fick扩散的非线性拟合参数
图12  60 ℃-80%RH及60 ℃-95%RH环境下GFRP老化机理
图13  80 ℃-95%RH环境下GFRP老化机理
[1] Liu T Q, Liu X, Feng P. A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects [J]. Composites, 2020, 191B: 107958
[2] Ding K K, Liu S T, Guo W M, et al. Prediction for corrosion aging of polyethylene in marine atmospheric environment of Qingdao [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1070
[2] (丁康康, 刘少通, 郭为民 等. 聚乙烯青岛海洋大气环境腐蚀老化预测研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1070)
[3] Yin X L, Liu Y C, Miao Y F, et al. Water absorption, hydrothermal expansion, and thermomechanical properties of a vinylester resin for fiber-reinforced polymer composites subjected to water or alkaline solution immersion [J]. Polymers, 2019, 11: 505
[4] Robin A, Arhant M, Davies P, et al. Effect of aging on the in-plane and out-of-plane mechanical properties of composites for design of marine structures [J]. Composites, 2023, 11C: 100354
[5] Beura S, Chakraverty A P, Pati S N, et al. Effect of salinity and strain rate on sea water aged GFRP composite for marine applications [J]. Mater. Today Commun., 2023, 34: 105056
[6] Li K, Zhai X F, Guan F, et al. Progress on materials and protection technologies for marine propeller [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 495
[6] (李 科, 翟晓凡, 管 方 等. 船用螺旋桨防护技术及其材料研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 495)
[7] Guermazi N, Tarjem A B, Ksouri I, et al. On the durability of FRP composites for aircraft structures in hygrothermal conditioning [J]. Composites, 2016, 85B: 294
[8] Silva M A G, Sena da Fonseca B, Biscaia H. On estimates of durability of FRP based on accelerated tests [J]. Compos. Struct., 2014, 116: 377
[9] Chen J S, Yang G W, Xiao S N, et al. Effect of temperature and moisture composite environments on the mechanical properties and mechanisms of woven carbon fiber composites [J]. Polym. Compos., 2024, 45: 4618
[10] Zhang X Y, Cao D, Lu F, et al. Aging behavior of T700/5224 composite in hygrothermal environment and chemical media [J]. J. Mater. Eng., 2016, 44: 82
[10] (张晓云, 曹 东, 陆 峰 等. T700/5224复合材料在湿热环境和化学介质中的老化行为 [J]. 材料工程, 2016, 44: 82)
[11] Lv X J, Zhang Q, Xiang M, et al. Influence of environmental factors on the mechanical properties of composites [J]. J. Chin. Soc. Corros. Prot., 2007, 27: 97
[11] (吕小军, 张 琦, 项 民 等. 环境因素对复合材料力学性能的影响 [J]. 中国腐蚀与防护学报, 2007, 27: 97)
[12] Almeida Jr J H S, Souza S D B, Botelho E C, et al. Carbon fiber-reinforced epoxy filament-wound composite laminates exposed to hygrothermal conditioning [J]. J. Mater. Sci., 2016, 51: 4697
[13] He W P, Li X, Li P, et al. Experimental investigation on hygroscopic aging of glass fiber reinforced vinylester resin composites [J]. Polymers, 2022, 14: 3828
[14] Sousa J M, Garrido M, Correia J R, et al. Hygrothermal ageing of pultruded GFRP profiles: Comparative study of unsaturated polyester and vinyl ester resin matrices [J]. Composites, 2021, 140A: 106193
[15] Nie Y N, Shen H, Gu K P, et al. Seawater corrosion resistance and service life prediction of glass fiber reinforced plastic composites [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 357
[15] (聂亚楠, 沈 浩, 谷坤鹏 等. 玻璃钢复合材料耐海水腐蚀性能及抗Cl-渗透寿命预测 [J]. 中国腐蚀与防护学报, 2016, 36: 357)
[16] Shen C H, Springer G S. Moisture absorption and desorption of composite materials [J]. J. Compos. Mater., 1976, 10: 2
[17] Cao Y L, Yu Z Q, Feng P, et al. Performance optimization and deterioration mechanism of fiber reinforced epoxy/vinyl resin composite materials: A review [J]. Acta Mater. Compos. Sin., 2024, 41: 1179
[17] (曹银龙, 于桢琪, 冯 鹏 等. 纤维增强环氧/乙烯基树脂复合材料性能优化与劣化机制研究进展 [J]. 复合材料学报, 2024, 41: 1179)
[18] Wang B M, Ci S Z, Zhou M Z, et al. Effects of hygrothermal and salt mist ageing on the properties of epoxy resins and their composites [J]. Polymers, 2023, 15: 725
[19] Xian G J, Bai Y B, Qi X, et al. Hygrothermal aging on the mechanical property and degradation mechanism of carbon fiber reinforced epoxy composites modified by nylon 6 [J]. J. Mater. Res. Technol., 2024, 33: 6297
[20] Zhou S, Jia Y X, Xu L, et al. Study on the damage behavior of carbon fiber composite after low-velocity impact under hygrothermal aging [J]. J. Appl. Polym. Sci., 2020, 138: 50289
[21] Toscano A, Pitarresi G, Scafidi M, et al. Water diffusion and swelling stresses in highly crosslinked epoxy matrices [J]. Polym. Degrad. Stab., 2016, 133: 255
[22] Bao L R, Yee A F. Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber composites: Part II—Woven and hybrid composites [J]. Compos. Sci. Technol., 2002, 62: 2111
[23] Liu L L, Zhao Z H, Chen W, et al. Interlaminar shear property and high-velocity impact resistance of CFRP laminates after cyclic hygrothermal aging [J]. Int. J. Crashworthiness, 2019, 25: 307
[24] Karad S K, Jones F R. Mechanisms of moisture absorption by cyanate ester modified epoxy resin matrices: the clustering of water molecules [J]. Polymer, 2005, 46: 2732
[1] 张德平, 闫立震, 于洋, 杨广明, 代春宇, 孟乐, 徐博, 刘智勇. CO2 驱采油井复杂环境中N80油管断裂失效机理[J]. 中国腐蚀与防护学报, 2025, 45(6): 1698-1708.
[2] 佟向瑜, 徐玮辰, 王秀通, 王优强, 段继周. 常用钛合金焊接接头显微组织结构及对材料性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1161-1174.
[3] 李丽, 李善文, 史洪微, 梁国平, 李春霖, 孙禹, 秦晋, 王伟, 韩恩厚. 高速列车用铝合金环氧底漆的腐蚀行为和湿热老化机理研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 757-764.
[4] 刘明, 张连栋, 孙志华, 高蒙, 闫巍, 赵明亮. 典型氟橡胶密封材料热空气老化试验研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 137-147.
[5] 禹文娟, 王天丛, 赵东杨, 向雪云, 吴航, 王文. 封闭型耐蚀涂层的寿命预测模型研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1617-1624.
[6] 李红玲, 郎五可. 环境友好防腐材料-聚苯胺纳米复合材料的制备及其研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 874-882.
[7] 张帮彦, 吴洪斌, 胡雪刚, 董家键, 郑世杰, 尹蔚蔚, 张方宇, 田礼熙, 刘光明. 机械合金化+放电等子烧结FeCrAl/La2Zr2O7 复合材料高温氧化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 965-971.
[8] 朱慧文, 郑黎, 张昊, 于宝义, 崔志博. BeWE43镁合金高温氧化行为及阻燃性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[9] 李刚卿, 刘茜, 孙晓光, 潘景龙, 曹祥康, 董泽华. 缺陷自预警涂层的触发机制及制备策略研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 540-552.
[10] 和雅洁, 陈灵芝, 阮章顺, 付晓刚, 纪琤, 龙斌. 小冲杆技术及其在材料与铅铋脆化效应研究中的应用[J]. 中国腐蚀与防护学报, 2024, 44(3): 567-575.
[11] 李卓玄, 曹艳辉, 李崇杰, 李辉, 张小明, 雍兴跃. 耦接件涂层失效程度与其力学损伤之间的关系[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[12] 廖敏行, 刘俊, 董宝军, 冷雪松, 蔡泽伦, 武俊伟, 贺建超. 盐雾环境对1Cr18Ni9Ti钎焊接头的影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[13] 於琛钧, 张天翼, 张乃强, 朱忠亮. 组织老化对P92钢在超临界水中氧化行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[14] 李春霖, 史洪微, 梁国平, 李丽, 王浩, 王伟, 刘福春, 韩恩厚. 高速列车用聚氨酯面漆耐蚀性能和老化机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[15] 尚进, 古岩, 赵京, 王哲, 张博, 赵统君, 陈泽浩, 王金龙. 增材制造Hastelloy X合金在850 ℃混合硫酸盐中热腐蚀行为及其对力学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 671-676.