|
|
基于物理信息神经网络的油气管道内腐蚀预测方法 |
周涛涛1,2,3, 刘迎正1,2,3( ), 郑文培1,2,3, 姜恒良4, 刘海鹏4, 夏刚4 |
1 中国石油大学(北京)安全与海洋工程学院 北京 102249 2 油气生产安全与应急技术应急管理部重点实验室 北京 102249 3 国家市场监督管理总局重点实验室(油气生产装备质量检测与健康诊断) 北京 102249 4 中国石油国际勘探开发有限公司 北京 102100 |
|
Pipeline Corrosion Prediction Method Based on Physics-informed Neural Networks |
ZHOU Taotao1,2,3, LIU Yingzheng1,2,3( ), ZHENG Wenpei1,2,3, JIANG Hengliang4, LIU Haipeng4, XIA Gang4 |
1 College of Safety and Ocean Engineering, China University of Petroleum (Beijing), Beijing 102249, China 2 Key Laboratory of Oil and Gas Safety and Emergency Technology, Ministry of Emergency Management, Beijing 102249, China 3 Key Laboratory of Oil and Gas Production Equipment Quality Inspection and Health Diagnosis, State Administration for Market Regulation, Beijing 102249, China 4 China National Oil and Gas Exploration and Development Corporation Limited, Beijing 102100, China |
引用本文:
周涛涛, 刘迎正, 郑文培, 姜恒良, 刘海鹏, 夏刚. 基于物理信息神经网络的油气管道内腐蚀预测方法[J]. 中国腐蚀与防护学报, 2025, 45(5): 1320-1330.
Taotao ZHOU,
Yingzheng LIU,
Wenpei ZHENG,
Hengliang JIANG,
Haipeng LIU,
Gang XIA.
Pipeline Corrosion Prediction Method Based on Physics-informed Neural Networks[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1320-1330.
[1] |
Wasim M, Djukic M B. External corrosion of oil and gas pipelines: A review of failure mechanisms and predictive preventions [J]. J. Nat. Gas Sci. Eng., 2022, 100: 104467
|
[2] |
Shuai Y, Wang X H, Cheng Y F. Buckling resistance of an X80 steel pipeline at corrosion defect under bending moment [J]. J. Nat. Gas Sci. Eng., 2021, 93: 104016
|
[3] |
El Amine Ben Seghier M, Keshtegar B, Tee K F, et al. Prediction of maximum pitting corrosion depth in oil and gas pipelines [J]. Eng. Fail. Anal., 2020, 112: 104505
|
[4] |
Ding J L, Xi X, Zhang D H. Development and outlook of China's pipeline transportation technologies under energy security strategy [J]. Oil Gas Storage Transp., 2022, 41: 632
|
[4] |
丁建林, 西 昕, 张对红. 能源安全战略下中国管道输送技术发展与展望 [J]. 油气储运, 2022, 41: 632
|
[5] |
Xiang Z H, Gao S H. Efficient management and safe operation of gas pipelines under the background of "Dual Carbon" [J]. Chem. Eng. Manag., 2024, (3): 123
|
[5] |
相泽厚, 高胜寒. “双碳”背景下输气管道的高效管理与安全运行 [J]. 化工管理, 2024, (3): 123
|
[6] |
Di C Y, Cui G S. Analysis of oil and gas pipeline corrosion causes and influencing factors [J]. Petrochem. Ind. Technol., 2024, 31(7): 69
|
[6] |
邸春雨, 崔国森. 浅析油气管道腐蚀原因及影响因素 [J]. 石化技术, 2024, 31(7): 69
|
[7] |
Wu F Y, Dai L B, Zhang X Z, et al. Analysis of chemical corrosion mechanism of oil and gas pipelines and its protective measures [J]. Contemp. Chem. Ind., 2024, 53: 1394
|
[7] |
吴付洋, 戴立斌, 张学忠 等. 油气管道化学腐蚀机理分析及其防护措施 [J]. 当代化工, 2024, 53: 1394
|
[8] |
Zhu H H, Guo H L, Yan S D, et al. Study on bearing capacity of buried pipeline containing corrosion defects under external force [J]. J. Saf. Sci. Technol., 2018, 14(11): 70
|
[8] |
朱豪豪, 郭海林, 闫生栋 等. 含腐蚀缺陷埋地管道在外力作用下的承载力研究 [J]. 中国安全生产科学技术, 2018, 14(11): 70
|
[9] |
Xie M J, Tian Z G. A review on pipeline integrity management utilizing in-line inspection data [J]. Eng. Fail. Anal., 2018, 92: 222
|
[10] |
De Waard C, Milliams D E. Carbonic acid corrosion of steel [J]. Corrosion, 1975, 31(5): 177
|
[11] |
De Waard C, Lotz U, Milliams D E. Predictive model for CO2 corrosion engineering in wet natural gas pipelines [J]. Corrosion, 1991, 47: 976
|
[12] |
De Waard C, Lotz U. Prediction of CO2 corrosion of carbon steel [A]. Corrosion National Association of Corrosion [C]. Houston, Taxes, 1993
|
[13] |
De Waard C, Lotz U, Dugstad A. Influence of liquid flow velocity on CO2 corrosion: a semi-empirical model [R]. Houston: NACE International, 1995
|
[14] |
De Waard C, Smith L, Bartlett P, et al. Modelling Corrosion Rates in Oil Production Tubing [M]. Eurocorr: Riva del Garda, 2001, 254
|
[15] |
Nesic S, Xiao Y, Pots B F M. A quasi 2-D localized corrosion model [A]. NACE Corrosion [C]. New Orleans, Louisiana, 2004
|
[16] |
Nesic S, Wang S H, Cai J Y, et al. Integrated CO2 corrosion-multiphase flow model [A]. SPE International Oilfield Corrosion Conference and Exhibition [C]. Aberdeen, United Kingdom, 2004
|
[17] |
Abdar P S, Hariri M B, Kahyarian A, et al. A revision of mechanistic modeling of mild steel corrosion in H2S environments [J]. Electrochim. Acta, 2021, 382: 138231
|
[18] |
Ma H N, Zhang W D, Wang Y, et al. Advances in corrosion growth modeling for oil and gas pipelines: a review [J]. Process Saf. Environ. Prot., 2023, 171: 71
|
[19] |
Al-Fakih A M, Algamal Z Y, Lee M H, et al. Quantitative structure-activity relationship model for prediction study of corrosion inhibition efficiency using two-stage sparse multiple linear regression [J]. J. Chemom., 2016, 30: 361
|
[20] |
Velázquez J C, Caleyo F, Valor A, et al. Predictive model for pitting corrosion in buried oil and gas pipelines [J]. Corrosion, 2009, 65: 332
|
[21] |
Ossai C I, Boswell B, Davies I. Markov chain modelling for time evolution of internal pitting corrosion distribution of oil and gas pipelines [J]. Eng. Fail. Anal., 2016, 60: 209
|
[22] |
Qin M, Liao K X, He G X, et al. Main control factors and prediction model of flow-accelerated CO2/H2S synergistic corrosion for X65 steel [J]. Process Saf. Environ. Prot., 2022, 160: 749
|
[23] |
El-Abbasy M S, Senouci A, Zayed T, et al. Artificial neural network models for predicting condition of offshore oil and gas pipelines [J]. Automat. Construct., 2014, 45: 50
|
[24] |
Zhou Y X, Peng X Y, Geng Y H, et al. Internal corrosion rate prediction of shale gas gathering pipeline based on KPCA-GA-BP model [J]. Corros. Prot., 2024, 45(4): 63
|
[24] |
周逸轩, 彭星煜, 耿月华 等. 基于KPCA-GA-BP模型的页岩气集输管道的内腐蚀速率预测 [J]. 腐蚀与防护, 2024, 45(4): 63
|
[25] |
Liu J H, Tang H G, Fu J, et al. Pipeline corrosion rate prediction based on SSA-SVR model [J]. Hot Work. Technol., 2025, 54(4): 142
|
[25] |
刘军衡, 唐海光, 付 军 等. 基于ISSA-SVR模型的管道腐蚀速率预测 [J]. 热加工工艺, 2025, 54(4): 142
|
[26] |
Zhou C Y, Zhang Z, Wang Y, et al. Prediction on CO2 corrosion rate of tubing based on neural oblivious decision ensemble [J]. J. Saf. Sci. Technol., 2023, 19(6): 127
|
[26] |
周驰宇, 张 智, 王 杨 等. 基于神经遗忘决策集成的油管CO2腐蚀速率预测 [J]. 中国安全生产科学技术, 2023, 19(6): 127
|
[27] |
Karpatne A, Atluri G, Faghmous J H, et al. Theory-guided data science: a new paradigm for scientific discovery from data [J]. IEEE Trans. Knowl. Data Eng., 2017, 29: 2318
|
[28] |
Azodi C B, Tang J L, Shiu S H. Opening the black box: interpretable machine learning for geneticists [J]. Trends Genet., 2020, 36: 442
doi: S0168-9525(20)30069-X
pmid: 32396837
|
[29] |
Raissi M, Yazdani A, Karniadakis G E. Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations [J]. Science, 2020, 367: 1026
doi: 10.1126/science.aaw4741
pmid: 32001523
|
[30] |
Chen L E, Zeng X Y, Zeng Z H, et al. Temperature prediction of lithium-ion batteries based on physical information and deep neural network [J]. Electr. Power, 2024, 57(11): 18
|
[30] |
陈来恩, 曾小勇, 曾子豪 等. 基于物理信息与深度神经网络的锂离子电池温度预测 [J]. 中国电力, 2024, 57(11): 18
|
[31] |
Karniadakis G E, Kevrekidis I G, Lu L, et al. Physics-informed machine learning [J]. Nat. Rev. Phys., 2021, 3: 422
doi: 10.1038/s42254-021-00314-5
|
[32] |
Zhou T T, Jiang S, Han T, et al. A physically consistent framework for fatigue life prediction using probabilistic physics-informed neural network [J]. Int. J. Fatigue, 2023, 166: 107234
|
[33] |
Ren S J, Zhu B Y, Weng Q H, et al. Forecasting method for NO x emission in coal fired boiler based on physics-informed neural network [J]. Proceedings of the CSEE, 2024, 44: 8157
|
[33] |
任少君, 朱保宇, 翁琪航 等. 基于物理信息神经网络的燃煤锅炉NO x 排放浓度预测方法 [J]. 中国电机工程学报, 2024, 44: 8157
|
[34] |
Deng Z P, Ren S J, Weng Q H, et al. Prediction method for biomass gasification product distribution based on physics-informed neural network [J]. J. Chin. Soc. Power Eng., 2024, 44: 719
|
[34] |
邓志平, 任少君, 翁琪航 等. 基于物理信息神经网络的生物质气化产物分布预测方法 [J]. 动力工程学报, 2024, 44: 719
doi: 10.19805/j.cnki.jcspe.2024.240004
|
[35] |
Chen Q, Huang W, Zhang C H, et al. Physics-guided prediction of corrosion rate inside gathering and transportation [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 720
|
[35] |
陈 潜, 黄 伟, 张昌会 等. 基于物理引导的集输管道内腐蚀速率预测及可解释性分析 [J]. 中国腐蚀与防护学报, 2025, 45: 720
|
[36] |
Liu G Y, Zhi S J, Liu X, et al. Research progress on internal corrosion of supercritical/dense-phase CO2 pipelines for CCUS [J]. Oil Gas Storage Transp., 2024, 43: 510
|
[36] |
刘广瑜, 支树洁, 柳 歆 等. CCUS超临界/密相CO2管道内腐蚀研究进展 [J]. 油气储运, 2024, 43: 510
|
[37] |
Hu L H, Yi H L, Yang W J, et al. Effect of water content on corrosion behavior of X65 pipeline steel in supercritical CO2 fluids [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 576
|
[37] |
胡丽华, 衣华磊, 杨维健 等. 水含量对超临界CO2输送管道腐蚀的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 576
doi: 10.11902/1005.4537.2023.227
|
[38] |
Song Y Y. Research for internal corrosion rate prediction of submarine oil and gas pipelines in service[D]. Xi'an: Xi'an University of Architecture and Technology, 2020
|
[38] |
宋莹莹. 在役海底油气管道内腐蚀速率预测研究 [D]. 西安: 西安建筑科技大学, 2020
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|