Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1320-1330     CSTR: 32134.14.1005.4537.2024.363      DOI: 10.11902/1005.4537.2024.363
  研究报告 本期目录 | 过刊浏览 |
基于物理信息神经网络的油气管道内腐蚀预测方法
周涛涛1,2,3, 刘迎正1,2,3(), 郑文培1,2,3, 姜恒良4, 刘海鹏4, 夏刚4
1 中国石油大学(北京)安全与海洋工程学院 北京 102249
2 油气生产安全与应急技术应急管理部重点实验室 北京 102249
3 国家市场监督管理总局重点实验室(油气生产装备质量检测与健康诊断) 北京 102249
4 中国石油国际勘探开发有限公司 北京 102100
Pipeline Corrosion Prediction Method Based on Physics-informed Neural Networks
ZHOU Taotao1,2,3, LIU Yingzheng1,2,3(), ZHENG Wenpei1,2,3, JIANG Hengliang4, LIU Haipeng4, XIA Gang4
1 College of Safety and Ocean Engineering, China University of Petroleum (Beijing), Beijing 102249, China
2 Key Laboratory of Oil and Gas Safety and Emergency Technology, Ministry of Emergency Management, Beijing 102249, China
3 Key Laboratory of Oil and Gas Production Equipment Quality Inspection and Health Diagnosis, State Administration for Market Regulation, Beijing 102249, China
4 China National Oil and Gas Exploration and Development Corporation Limited, Beijing 102100, China
引用本文:

周涛涛, 刘迎正, 郑文培, 姜恒良, 刘海鹏, 夏刚. 基于物理信息神经网络的油气管道内腐蚀预测方法[J]. 中国腐蚀与防护学报, 2025, 45(5): 1320-1330.
Taotao ZHOU, Yingzheng LIU, Wenpei ZHENG, Hengliang JIANG, Haipeng LIU, Gang XIA. Pipeline Corrosion Prediction Method Based on Physics-informed Neural Networks[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1320-1330.

全文: PDF(3465 KB)   HTML
摘要: 

为了对管道内腐蚀预测进行准确分析,解决传统机器学习在预测管道腐蚀速率时的解释能力不足和泛化能力不足的问题。通过将温度、CO2分压与腐蚀速率之间的物理特性嵌入到神经网络中,使得模型服从给定的机理约束,同时考虑结构损失,缓解了模型过拟合和欠拟合,建立了基于物理信息神经网络(PINN)管道内腐蚀预测模型。结果表明:PINN模型效果优于支持向量机(SVM)、极端梯度提升(XGBoost)、人工神经网络(ANN)等模型,严格遵循着相关变量的单调性关系,确保了预测结果的物理一致性,同时该模型也表现出卓越的泛化能力。

关键词 内腐蚀速率预测物理信息神经网络物理单调性    
Abstract

With the increasing oil and gas exploration, the number of service pipelines is growing, making the accurate prediction of internal corrosion crucial for pipeline integrity management. To address the limitations of traditional machine learning methods in interpreting and generalizing corrosion rate predictions, the monotonic relationships between temperature, CO2 partial pressure, and corrosion rate are incorporated into a Physics-Informed Neural Network (PINN). This approach is designed to adhere to mechanistic constraints, avoid overfitting and underfitting, and ensure physical consistency. The PINN model is shown to outperform Support Vector Machines (SVM), Extreme Gradient Boosting (XGBoost), and Artificial Neural Networks (ANN), demonstrating superior accuracy and generalization.

Key wordsinternal corrosion    rate prediction    physics-informed neural networks    monotonicity in physics
收稿日期: 2024-11-06      32134.14.1005.4537.2024.363
ZTFLH:  TE985  
基金资助:国家自然科学基金(72301294);中国石油天然气集团有限公司-中国石油大学(北京)战略合作科技专项(ZLZX2020-05);中国石油大学(北京)科研启动基金(2462023BJRC016)
通讯作者: 刘迎正,E-mail:liuyingzheng2024@126.com,研究方向为油气管道腐蚀预测
Corresponding author: LIU Yingzheng, E-mail: liuyingzheng2024@126.com
作者简介: 周涛涛,男,1990年生,博士,副教授
LabelsVariableVariable nameUnitRangeAverage
X1TTemperature41.7-69.458.5
X2PSystem pressurePa1.52 × 106-3.23 × 1062.28 × 106
X3pCO2CO2 partial pressurePa2.9 × 104-3.8 × 1043.3 × 104
X4pHpH-4.2-6.25.8
X5VfFluid flow ratem·s-10.37-0.690.53
X6Cl-Cl- concentrationmg·L-13420-82806227
X7CO2 eqCO2 concentrationmg·L-115.8-27.422.7
X8HCO3-HCO3- concentrationmg·L-1107-208150
X9WCWater content%52.5-63.958.6
YVcorrInternal corrosion ratemm·a-12.289-3.1052.681
表1  管道内腐蚀预测模型的相关变量
图1  基于PINN的内腐蚀预测模型框架
图2  不同模型预测结果比较

Function

Metric

PINNANNSVMXGBoostDe Waard
RMSE0.13290.34190.20950.24910.7258
MAPE3.81%10.72%5.76%7.37%63.19%
表2  各模型误差
图3  不同模型预测的管道在不同CO2分压下的腐蚀速率随温度的变化
图4  各个模型中预测点对温度和pCO2偏导数的分布图
图5  不同模型预测的管道在不同温度下的腐蚀速率随pCO2的变化
[1] Wasim M, Djukic M B. External corrosion of oil and gas pipelines: A review of failure mechanisms and predictive preventions [J]. J. Nat. Gas Sci. Eng., 2022, 100: 104467
[2] Shuai Y, Wang X H, Cheng Y F. Buckling resistance of an X80 steel pipeline at corrosion defect under bending moment [J]. J. Nat. Gas Sci. Eng., 2021, 93: 104016
[3] El Amine Ben Seghier M, Keshtegar B, Tee K F, et al. Prediction of maximum pitting corrosion depth in oil and gas pipelines [J]. Eng. Fail. Anal., 2020, 112: 104505
[4] Ding J L, Xi X, Zhang D H. Development and outlook of China's pipeline transportation technologies under energy security strategy [J]. Oil Gas Storage Transp., 2022, 41: 632
[4] 丁建林, 西 昕, 张对红. 能源安全战略下中国管道输送技术发展与展望 [J]. 油气储运, 2022, 41: 632
[5] Xiang Z H, Gao S H. Efficient management and safe operation of gas pipelines under the background of "Dual Carbon" [J]. Chem. Eng. Manag., 2024, (3): 123
[5] 相泽厚, 高胜寒. “双碳”背景下输气管道的高效管理与安全运行 [J]. 化工管理, 2024, (3): 123
[6] Di C Y, Cui G S. Analysis of oil and gas pipeline corrosion causes and influencing factors [J]. Petrochem. Ind. Technol., 2024, 31(7): 69
[6] 邸春雨, 崔国森. 浅析油气管道腐蚀原因及影响因素 [J]. 石化技术, 2024, 31(7): 69
[7] Wu F Y, Dai L B, Zhang X Z, et al. Analysis of chemical corrosion mechanism of oil and gas pipelines and its protective measures [J]. Contemp. Chem. Ind., 2024, 53: 1394
[7] 吴付洋, 戴立斌, 张学忠 等. 油气管道化学腐蚀机理分析及其防护措施 [J]. 当代化工, 2024, 53: 1394
[8] Zhu H H, Guo H L, Yan S D, et al. Study on bearing capacity of buried pipeline containing corrosion defects under external force [J]. J. Saf. Sci. Technol., 2018, 14(11): 70
[8] 朱豪豪, 郭海林, 闫生栋 等. 含腐蚀缺陷埋地管道在外力作用下的承载力研究 [J]. 中国安全生产科学技术, 2018, 14(11): 70
[9] Xie M J, Tian Z G. A review on pipeline integrity management utilizing in-line inspection data [J]. Eng. Fail. Anal., 2018, 92: 222
[10] De Waard C, Milliams D E. Carbonic acid corrosion of steel [J]. Corrosion, 1975, 31(5): 177
[11] De Waard C, Lotz U, Milliams D E. Predictive model for CO2 corrosion engineering in wet natural gas pipelines [J]. Corrosion, 1991, 47: 976
[12] De Waard C, Lotz U. Prediction of CO2 corrosion of carbon steel [A]. Corrosion National Association of Corrosion [C]. Houston, Taxes, 1993
[13] De Waard C, Lotz U, Dugstad A. Influence of liquid flow velocity on CO2 corrosion: a semi-empirical model [R]. Houston: NACE International, 1995
[14] De Waard C, Smith L, Bartlett P, et al. Modelling Corrosion Rates in Oil Production Tubing [M]. Eurocorr: Riva del Garda, 2001, 254
[15] Nesic S, Xiao Y, Pots B F M. A quasi 2-D localized corrosion model [A]. NACE Corrosion [C]. New Orleans, Louisiana, 2004
[16] Nesic S, Wang S H, Cai J Y, et al. Integrated CO2 corrosion-multiphase flow model [A]. SPE International Oilfield Corrosion Conference and Exhibition [C]. Aberdeen, United Kingdom, 2004
[17] Abdar P S, Hariri M B, Kahyarian A, et al. A revision of mechanistic modeling of mild steel corrosion in H2S environments [J]. Electrochim. Acta, 2021, 382: 138231
[18] Ma H N, Zhang W D, Wang Y, et al. Advances in corrosion growth modeling for oil and gas pipelines: a review [J]. Process Saf. Environ. Prot., 2023, 171: 71
[19] Al-Fakih A M, Algamal Z Y, Lee M H, et al. Quantitative structure-activity relationship model for prediction study of corrosion inhibition efficiency using two-stage sparse multiple linear regression [J]. J. Chemom., 2016, 30: 361
[20] Velázquez J C, Caleyo F, Valor A, et al. Predictive model for pitting corrosion in buried oil and gas pipelines [J]. Corrosion, 2009, 65: 332
[21] Ossai C I, Boswell B, Davies I. Markov chain modelling for time evolution of internal pitting corrosion distribution of oil and gas pipelines [J]. Eng. Fail. Anal., 2016, 60: 209
[22] Qin M, Liao K X, He G X, et al. Main control factors and prediction model of flow-accelerated CO2/H2S synergistic corrosion for X65 steel [J]. Process Saf. Environ. Prot., 2022, 160: 749
[23] El-Abbasy M S, Senouci A, Zayed T, et al. Artificial neural network models for predicting condition of offshore oil and gas pipelines [J]. Automat. Construct., 2014, 45: 50
[24] Zhou Y X, Peng X Y, Geng Y H, et al. Internal corrosion rate prediction of shale gas gathering pipeline based on KPCA-GA-BP model [J]. Corros. Prot., 2024, 45(4): 63
[24] 周逸轩, 彭星煜, 耿月华 等. 基于KPCA-GA-BP模型的页岩气集输管道的内腐蚀速率预测 [J]. 腐蚀与防护, 2024, 45(4): 63
[25] Liu J H, Tang H G, Fu J, et al. Pipeline corrosion rate prediction based on SSA-SVR model [J]. Hot Work. Technol., 2025, 54(4): 142
[25] 刘军衡, 唐海光, 付 军 等. 基于ISSA-SVR模型的管道腐蚀速率预测 [J]. 热加工工艺, 2025, 54(4): 142
[26] Zhou C Y, Zhang Z, Wang Y, et al. Prediction on CO2 corrosion rate of tubing based on neural oblivious decision ensemble [J]. J. Saf. Sci. Technol., 2023, 19(6): 127
[26] 周驰宇, 张 智, 王 杨 等. 基于神经遗忘决策集成的油管CO2腐蚀速率预测 [J]. 中国安全生产科学技术, 2023, 19(6): 127
[27] Karpatne A, Atluri G, Faghmous J H, et al. Theory-guided data science: a new paradigm for scientific discovery from data [J]. IEEE Trans. Knowl. Data Eng., 2017, 29: 2318
[28] Azodi C B, Tang J L, Shiu S H. Opening the black box: interpretable machine learning for geneticists [J]. Trends Genet., 2020, 36: 442
doi: S0168-9525(20)30069-X pmid: 32396837
[29] Raissi M, Yazdani A, Karniadakis G E. Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations [J]. Science, 2020, 367: 1026
doi: 10.1126/science.aaw4741 pmid: 32001523
[30] Chen L E, Zeng X Y, Zeng Z H, et al. Temperature prediction of lithium-ion batteries based on physical information and deep neural network [J]. Electr. Power, 2024, 57(11): 18
[30] 陈来恩, 曾小勇, 曾子豪 等. 基于物理信息与深度神经网络的锂离子电池温度预测 [J]. 中国电力, 2024, 57(11): 18
[31] Karniadakis G E, Kevrekidis I G, Lu L, et al. Physics-informed machine learning [J]. Nat. Rev. Phys., 2021, 3: 422
doi: 10.1038/s42254-021-00314-5
[32] Zhou T T, Jiang S, Han T, et al. A physically consistent framework for fatigue life prediction using probabilistic physics-informed neural network [J]. Int. J. Fatigue, 2023, 166: 107234
[33] Ren S J, Zhu B Y, Weng Q H, et al. Forecasting method for NO x emission in coal fired boiler based on physics-informed neural network [J]. Proceedings of the CSEE, 2024, 44: 8157
[33] 任少君, 朱保宇, 翁琪航 等. 基于物理信息神经网络的燃煤锅炉NO x 排放浓度预测方法 [J]. 中国电机工程学报, 2024, 44: 8157
[34] Deng Z P, Ren S J, Weng Q H, et al. Prediction method for biomass gasification product distribution based on physics-informed neural network [J]. J. Chin. Soc. Power Eng., 2024, 44: 719
[34] 邓志平, 任少君, 翁琪航 等. 基于物理信息神经网络的生物质气化产物分布预测方法 [J]. 动力工程学报, 2024, 44: 719
doi: 10.19805/j.cnki.jcspe.2024.240004
[35] Chen Q, Huang W, Zhang C H, et al. Physics-guided prediction of corrosion rate inside gathering and transportation [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 720
[35] 陈 潜, 黄 伟, 张昌会 等. 基于物理引导的集输管道内腐蚀速率预测及可解释性分析 [J]. 中国腐蚀与防护学报, 2025, 45: 720
[36] Liu G Y, Zhi S J, Liu X, et al. Research progress on internal corrosion of supercritical/dense-phase CO2 pipelines for CCUS [J]. Oil Gas Storage Transp., 2024, 43: 510
[36] 刘广瑜, 支树洁, 柳 歆 等. CCUS超临界/密相CO2管道内腐蚀研究进展 [J]. 油气储运, 2024, 43: 510
[37] Hu L H, Yi H L, Yang W J, et al. Effect of water content on corrosion behavior of X65 pipeline steel in supercritical CO2 fluids [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 576
[37] 胡丽华, 衣华磊, 杨维健 等. 水含量对超临界CO2输送管道腐蚀的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 576
doi: 10.11902/1005.4537.2023.227
[38] Song Y Y. Research for internal corrosion rate prediction of submarine oil and gas pipelines in service[D]. Xi'an: Xi'an University of Architecture and Technology, 2020
[38] 宋莹莹. 在役海底油气管道内腐蚀速率预测研究 [D]. 西安: 西安建筑科技大学, 2020
[1] 陈潜, 黄伟, 张昌会, 管奥成, 张宸, 叶晓芃. 基于物理引导的集输管道内腐蚀速率预测及可解释性分析[J]. 中国腐蚀与防护学报, 2025, 45(3): 720-730.
[2] 郑文培, 刘迎正, 张娅茹, 周涛涛, 李兴涛, 禹胜阳, 蒋璐朦. 基于全局与局部误差融合的集成腐蚀速率预测模型:一种稳健优化策略[J]. 中国腐蚀与防护学报, 2025, 45(2): 523-532.
[3] 王文泉, 崔宇, 薛蕴鹏, 刘莉, 王福会. 潮湿空气中应力耦合固态NaCl作用下GH4169合金的中温腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1399-1411.
[4] 张斐, 王海涛, 何勇君, 张天遂, 刘宏芳. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.