|
|
油气田用马氏体不锈钢腐蚀性能研究现状与进展 |
张雄斌1,2, 党恩1,3, 于晓婧1,4, 汤玉斐1,4, 赵康1,4( ) |
1 西安理工大学材料科学与工程学院 西安 710048 2 西安工程大学材料工程学院 西安 710048 3 宝鸡石油机械有限责任公司 宝鸡 721000 4 西安理工大学 陕西省腐蚀与防护重点实验室 西安 710048 |
|
Research Status and Progress on Corrosion Performance of Super Martensitic Stainless Steel for Oil and Gas Fields |
ZHANG Xiongbin1,2, DANG En1,3, YU Xiaojing1,4, TANG Yufei1,4, ZHAO Kang1,4( ) |
1 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China 2 School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China 3 Baoji Petroleum Machinery Co., Ltd., Baoji 721000, China 4 Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048, China |
引用本文:
张雄斌, 党恩, 于晓婧, 汤玉斐, 赵康. 油气田用马氏体不锈钢腐蚀性能研究现状与进展[J]. 中国腐蚀与防护学报, 2025, 45(4): 837-848.
Xiongbin ZHANG,
En DANG,
Xiaojing YU,
Yufei TANG,
Kang ZHAO.
Research Status and Progress on Corrosion Performance of Super Martensitic Stainless Steel for Oil and Gas Fields[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 837-848.
[1] |
Zhang K, Liu X F, Wang D B, et al. A review of reservoir damage during hydraulic fracturing of deep and ultra-deep reservoirs [J]. Petrol. Sci., 2024, 21: 384
|
[2] |
Ji N, Zhao M F, Wu Z J, et al. Collapse failure analysis of S13Cr-110 tubing in a high-pressure and high-temperature gas well [J]. Eng. Fail. Anal., 2023, 148: 107187
|
[3] |
Meena L K, Gorja S R, Bhardwaj A, et al. Sour service domains of 13Cr martensitic stainless steels: a review of state-of-art knowledge vis-à-vis ANSI/NACE MR0175/ISO 15156 [J]. Trans. Indian Inst. Met., 2024, 77: 1361
|
[4] |
Lazaro A F, Tavares S S M, Perez G, et al. Evaluation of post weld heat treatments and susceptibility to sulfide stress corrosion cracking of simulated HAZ in forged supermartensitic stainless steel UNS S41427 [J]. Eng. Fail. Anal., 2023, 152: 107494
|
[5] |
Man C, Dong C F, Cui Z Y, et al. A comparative study of primary and secondary passive films formed on AM355 stainless steel in 0.1 M NaOH [J]. Appl. Surf. Sci., 2018, 427: 763
|
[6] |
Malik S, Radwan A B, Al-Qahtani N, et al. Focused review on factors affecting martensitic stainless steels and super martensitic stainless steel passive film in the oil and gas field [J]. J. Solid State Electrochem., 2024, 28: 3533
|
[7] |
Binsabt M H, Azeez F A, Suleiman N. Eco-friendly silane-based coating for mitigation of carbon steel corrosion in marine environments [J]. ACS Omega, 2023, 8: 12886
doi: 10.1021/acsomega.3c00013
pmid: 37065042
|
[8] |
Shi C J, Lei R, Deng S D, et al. Corrosion inhibition of Erigeron canadensis L.extract for steel in HCl solution [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1189
|
[8] |
(石成杰, 雷 然, 邓书端 等. 小蓬草提取物对钢在HCl介质中的缓蚀作用 [J]. 中国腐蚀与防护学报, 2024, 44: 1189)
doi: 10.11902/1005.4537.2023.364
|
[9] |
Wang J, Guo C, Huang K C, et al. Study on fatigue crack growth rate of 15CrMo steel based on stress ratio and corrosion environment [J]. IOP Conf. Ser.: Earth Environ. Sci., 2020, 508: 012215
|
[10] |
Yue X Q, Ren Y Q, Huang L Y, et al. The role of Cl- in the formation of the corrosion products and localised corrosion of 15Cr martensite stainless steel under an CO2-containing extreme oilfield condition [J]. Corros. Sci., 2022, 194: 109935
|
[11] |
Man C, Dong C F, Kong D C, et al. Beneficial effect of reversed austenite on the intergranular corrosion resistance of martensitic stainless steel [J]. Corros. Sci., 2019, 151: 108
|
[12] |
Li Z L, Song J L, Chen J H, et al. Corrosion behavior of a high-strength steel E690 in aqueous electrolytes with different chloride concentrations [J]. J. Mater. Res. Technol., 2023, 22: 596
|
[13] |
Loto R T. Effect of SO 4 2 - and Cl- anionic attack on the localized corrosion resistance and morphology of 409 ferritic stainless steel [J]. Results Phys., 2019, 12: 738
|
[14] |
Zhang X M, Chen Z Y, Luo H F, et al. Corrosion resistances of metallic materials in environments containing chloride ions: a review [J]. Trans. Nonferr. Metal. Soc. China, 2022, 32: 377
|
[15] |
Zhang B, Wang J, Wu B, et al. Unmasking chloride attack on the passive film of metals [J]. Nat. Commun., 2018, 9: 2559
doi: 10.1038/s41467-018-04942-x
pmid: 29967353
|
[16] |
Meng X G, Wu W, Peng F, et al. Analysis and countermeasures of corrosion cracking of an oil pipe [J]. Dril. Fluid Compl. Fluid, 2021, 38: 380
|
[16] |
(孟选刚, 吴 玟, 彭 芬 等. 某超深井油管腐蚀开裂分析及对策研究 [J]. 钻井液与完井液, 2021, 38: 380)
|
[17] |
Li Q D, Meng H M, Randou, et al. Research on the corrosion behavior of 14Cr12Ni3Mo2VN stainless steel in different concentrations of NaCl solution [J]. Int. J. Electrochem. Sci., 2020, 15: 109
|
[18] |
Li Q D, Ran D, Zhai F Q, et al. Research on the corrosion behavior of 14Cr12Ni3Mo2VN stainless steel in a NaCl solution with different pH [J]. Int. J. Electrochem. Sci., 2020, 15: 2166
|
[19] |
Li H Y, Dong C F, Xiao K, et al. Effects of chloride ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel [J]. Int. J. Miner. Metall. Mater., 2016, 23: 1286
|
[20] |
Tae S H, Noguchi T, Ujiro T. Corrosion inhibition by Cr-bearing rebar in concrete due to combined deterioration of carbonation and chloride attack [J]. ISIJ Int., 2007, 47: 146
|
[21] |
Zhang C Y, Qian W H, Zheng Y P, et al. CO2 corrosion law and its application to analysis of tubing in deep and super deep wells [J]. Sci. Technol. Rev., 2012, 30: 47
|
[21] |
(张春颜, 钱文辉, 郑玉萍 等. 深井油管CO2腐蚀规律及其应用研究 [J]. 科技导报, 2012, 30: 47)
|
[22] |
Choi Y S, Young D, Nešić S, et al. Wellbore integrity and corrosion of carbon steel in CO2 geologic storage environments: a literature review [J]. Int. J. Greenh. Gas Con., 2013, 16: S70
|
[23] |
Zhang G C, Zhang H, Niu K, et al. Corrosion resistance of 13Cr stainless steel against high temperature and high pressure carbon dioxide [J]. Mater. Prot., 2012, 45: 58
|
[23] |
(张国超, 张 涵, 牛 坤 等. 高温高压下超级13Cr不锈钢抗CO2腐蚀性能 [J]. 材料保护, 2012, 45: 58)
|
[24] |
Yue X Q, Zhang L, Sun C, et al. A thermodynamic and kinetic study of the formation and evolution of corrosion product scales on 13Cr stainless steel in a geothermal environment [J]. Corros. Sci., 2020, 169: 108640
|
[25] |
Qi W L, Zhao Y, Zhang T, et al. Effect of acidizing process on the stress corrosion cracking of HP-13Cr stainless steel in the ultra-depth well environment [J]. Front. Mater., 2021, 8: 732931
|
[26] |
Zhu J Y, Li D P, Zhang Y N, et al. Effect of extremely high CO2 pressure on the formation of the corrosion film on 13Cr stainless steel [J]. RSC Adv., 2019, 9: 38597
|
[27] |
Xiao G Q, Tan S Z, Yu Z M, et al. CO2 corrosion behaviors of 13Cr steel in the high-temperature steam environment [J]. Petroleum, 2020, 6: 106
|
[28] |
Liu H F, Hua Y, Shi S K, et al. Stability of passive film and pitting susceptibility of 2205 duplex stainless steel in CO2/H2S-containing geothermal environment [J]. Corros. Sci., 2023, 210: 110832
|
[29] |
Lei X W, Wang H Y, Mao F X, et al. Electrochemical behaviour of martensitic stainless steel after immersion in a H2S-saturated solution [J]. Corros. Sci., 2018, 131: 164
|
[30] |
Yao J X, Wang P Q, Zhong X K, et al. New insight into the fitness of 13Cr stainless steel in H2S-containing environment at high temperature [J]. J. Mater. Res. Technol., 2023, 27: 3131
|
[31] |
Monnot M, Nogueira R P, Roche V, et al. Sulfide stress corrosion study of a super martensitic stainless steel in H2S sour environments: metallic sulfides formation and hydrogen embrittlement [J]. Appl. Surf. Sci., 2017, 394: 132
|
[32] |
Wang X H, Li Z S, Tang Y F, et al. Influence of Cr content on characteristics of corrosion product film formed on several steels in artifitial stratum waters containing CO2-H2S-Cl- [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1043
|
[32] |
(王小红, 李子硕, 唐御峰 等. CO2-H2S-Cl-共存的地层水环境中Cr含量对钢的腐蚀产物膜特性的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 1043)
doi: 10.11902/1005.4537.2021.272
|
[33] |
Santos B A F, Souza R C, Serenario M E D, et al. The effect of different brines and temperatures on the competitive degradation mechanisms of CO2 and H2S in API X65 carbon steel [J]. J. Nat. Gas Sci. Eng., 2020, 80: 103405
|
[34] |
Zhang W J, Yu H F, Wang Y, et al. Research on the evolution of corrosion products of 17-4PH martensitic stainless steel in the tropical marine environment [J]. J. Mater. Res. Technol., 2024, 29: 3849
|
[35] |
Yang S F, Che Z C, Liu W, et al. Influence mechanism of heat treatment on corrosion resistance of Te-containing 15-5PH stainless steel [J]. Corros. Sci., 2023, 225: 111610
|
[36] |
Zhao X H, Huang W, Li G P, et al. Effect of CO2/H2S and applied stress on corrosion behavior of 15Cr tubing in oil field environment [J]. Metals, 2020, 10: 409
|
[37] |
Wang Y, Wang B, Xing X J, et al. Effects of flow velocity on the corrosion behaviour of super 13Cr stainless steel in ultra-HTHP CO2-H2S coexistence environment [J]. Corros. Sci., 2022, 200: 110235
|
[38] |
Gao K C, Shang S G, Zhang Z, et al. Effect of temperature on corrosion behavior and mechanism of S135 and G105 steels in CO2/H2S coexisting system [J]. Metals, 2022, 12: 1848
|
[39] |
Petrov A I, Razuvaeva M V. Stress corrosion cracking of metals and alloys in aggressive H2S-CO2-Cl- environments [J]. Tech. Phys., 2019, 64: 1814
|
[40] |
Davydov A, Alekseeva E, Kolnyshenko V, et al. Corrosion resistance of 13Cr steels [J]. Metals, 2023, 13: 1805
|
[41] |
Liu G D, Gong Z Y, Yang Y X, et al. Electrochemical dissolution behavior of stainless steels with different metallographic phases and its effects on micro electrochemical machining performance [J]. Electrochem. Commun., 2024, 160: 107677
|
[42] |
Jiang X Y, Li G, Tang H Y, et al. Modification of inclusions by rare earth elements in a high-strength oil casing steel for improved sulfur resistance [J]. Materials, 2023, 16: 675
|
[43] |
Bai Y Z, Zheng S J, Liu N, et al. The role of rare earths on steel and rare earth steel corrosion mechanism of research progress [J]. Coatings, 2024, 14: 465
|
[44] |
Yang C Y, Luan Y K, Li D Z, et al. Effects of rare earth elements on inclusions and impact toughness of high-carbon chromium bearing steel [J]. J. Mater. Sci. Technol., 2019, 35: 1298
doi: 10.1016/j.jmst.2019.01.015
|
[45] |
Zhang X, Wang Z H, Zhou Z H, et al. Effects of magnetic field and rare earth addition on corrosion behavior of Al-3.0wt%Mg alloy [J]. J. Alloy. Compd., 2017, 698: 241
|
[46] |
Jiang Z H, Wang P, Li D Z, et al. Effects of rare earth on microstructure and impact toughness of low alloy Cr-Mo-V steels for hydrogenation reactor vessels [J]. J. Mater. Sci. Technol., 2020, 45: 1
doi: 10.1016/j.jmst.2019.03.012
|
[47] |
Niu G, Yuan R, Misra R D K, et al. Effect of La on the corrosion behavior and mechanism of 3Ni weathering steel in a simulated marine atmospheric environment [J]. Acta Metall. Sin. (Engl. Lett.), 2024, 37: 308
|
[48] |
Zhang W, Zhang X, Qiao G J, et al. Effect of cobalt on the microstructure and corrosion behavior of martensitic age-hardened stainless steel [J]. J. Mater. Eng. Perform., 2019, 28: 4197
doi: 10.1007/s11665-019-04185-x
|
[49] |
Liu B, Zhao H Y, Li F, et al. Characterization and corrosion behavior of high-nitrogen HP-13Cr stainless steel in CO2 and H2S environment [J]. Int. J. Electrochem. Sci., 2021, 16: 150915
|
[50] |
Zang Q Y, Jin Y F, Zhang T, et al. Effect of yttrium addition on microstructure, mechanical and corrosion properties of 20Cr13 martensitic stainless steel [J]. J. Iron Steel Res. Int., 2020, 27: 451
doi: 10.1007/s42243-020-00377-1
|
[51] |
Wang C G, Ma R Y, Zhou Y T, et al. Effects of rare earth modifying inclusions on the pitting corrosion of 13Cr4Ni martensitic stainless steel [J]. J. Mater. Sci. Technol., 2021, 93: 232
doi: 10.1016/j.jmst.2021.03.014
|
[52] |
Landgraf P, Birnbaum P, Meza-García E, et al. Jominy end quench test of martensitic stainless steel X30Cr13 [J]. Metals, 2021, 11: 1071
|
[53] |
Long H C, Zhou X, Ma Y L, et al. The effect of heat treatment on the plasma nitriding of hot-rolled 17-7PH stainless steel [J]. Metals, 2024, 14: 1061
|
[54] |
Sun J L, Tang H J, Wang C L, et al. Effects of alloying elements and microstructure on stainless steel corrosion: a review [J]. Steel Res. Int., 2022, 93: 2100450
|
[55] |
Ma T C, Fu B, Guan W, et al. Dissolution behavior of carbide in 4Cr13 martensitic stainless steel during austenitizing [J]. J. Mater. Eng. Perform., 2024, 34: 5394
|
[56] |
Jin X J, Gong Y, Han X H, et al. A review of current state and prospect of the manufacturing and application of advanced hot stamping automobile steels [J]. Acta Metall. Sin., 2020, 56: 411
doi: 10.11900/0412.1961.2019.00381
|
[56] |
(金学军, 龚 煜, 韩先洪 等. 先进热成形汽车钢制造与使用的研究现状与展望 [J]. 金属学报, 2020, 56: 411)
doi: 10.11900/0412.1961.2019.00381
|
[57] |
Chen Z Y, Liu J, Ren X P, et al. Effect of rolling process on microstructure of 13Cr supermartensitic stainless steel [J]. Trans. Mater. Heat Treat., 2019, 40: 84
|
[57] |
(陈肇翼, 刘 靖, 任学平 等. 轧制工艺对13Cr超级马氏体不锈钢组织的影响 [J]. 材料热处理学报, 2019, 40: 84)
doi: 10.13289/j.issn.1009-6264.2018-0538
|
[58] |
Salahi S, Kazemipour M, Nasiri A. Effects of microstructural evolution on the corrosion properties of AISI 420 martensitic stainless steel during cold rolling process [J]. Mater. Chem. Phys., 2021, 258: 123916
|
[59] |
Zhao Y G, Liu W, Fan Y M, et al. Influence of microstructure on the corrosion behavior of super 13Cr martensitic stainless steel under heat treatment [J]. Mater. Charact., 2021, 175: 111066
|
[60] |
Wang P, Zheng W W, Dai X, et al. Prominent role of reversed austenite on corrosion property of super 13Cr martensitic stainless steel [J]. J. Mater. Res. Technol., 2023, 22: 1753
|
[61] |
Song X, Hu Y, Yan Z J, et al. Corrosion resistance improvement in 6Cr13 martensitic stainless steel via quenching-tempering and partitioning [J]. Mater. Corros., 2023, 74: 544
|
[62] |
Solovyeva V A, Almuhammadi K H, Badeghaish W O. Current downhole corrosion control solutions and trends in the oil and gas industry: a review [J]. Materials, 2023, 16: 1795
|
[63] |
Dalibon E L, Prieto G, Tuckart W R, et al. Tribological behaviour of a hyperlox coating deposited over nitrided martensitic stainless steel [J]. Surf. Topogr.: Metrol., 2022, 10: 034003
|
[64] |
Vega J, Scheerer H, Andersohn G, et al. Experimental studies of the effect of Ti interlayers on the corrosion resistance of TiN PVD coatings by using electrochemical methods [J]. Corros. Sci., 2018, 133: 240
|
[65] |
Pogrebnjak A, Smyrnova K, Bondar O. Nanocomposite multilayer binary nitride coatings based on transition and refractory metals: structure and properties [J]. Coatings, 2019, 9: 155
|
[66] |
Ding J C, Zhang T F, Mane R S, et al. Low-temperature deposition of nanocrystalline Al2O3 films by ion source-assisted magnetron sputtering [J]. Vacuum, 2018, 149: 284
|
[67] |
Sharun V, Rajasekaran M, Kumar S S, et al. Study on developments in protection coating techniques for steel [J]. Adv. Mater. Sci. Eng., 2022, 3: 2843043
|
[68] |
Ivanova A A, Surmeneva M A, Shugurov V V, et al. Physico-mechanical properties of Ti-Zr coatings fabricated via ion-assisted arc-plasma deposition [J]. Vacuum, 2018, 149: 129
|
[69] |
Graziani G, Bianchi M, Sassoni E, et al. Ion-substituted calcium phosphate coatings deposited by plasma-assisted techniques: a review [J]. Mater. Sci. Eng., 2017, 74C: 219
|
[70] |
Olia H, Ebrahimi-Kahrizsangi R, Ashrafizadeh F, et al. Corrosion study of TiN, TiAlN and CrN multilayer coatings deposit on martensitic stainless steel by arc cathodic physical vapour deposition [J]. Mater. Res. Express, 2019, 6: 046425
|
[71] |
Xi Y T, Wan L, Hou J G, et al. Improvement of erosion-corrosion behavior of AISI 420 stainless steel by ion-assisted deposition ZrN coatings [J]. Metals, 2021, 11: 1181
|
[72] |
Jasim Z I, Rashid K H, Al-Azawi K F, et al. Synthesis of schiff-based derivative as a novel corrosion inhibitor for mild steel in 1 M HCl solution: optimization, experimental, and theoretical investigations [J]. J. Bio. Tribo Corros., 2023, 9: 54
|
[73] |
Zhao W W, Li F X, Lv X H, et al. Research progress of organic corrosion inhibitors in metal corrosion protection [J]. Crystals, 2023, 13: 1329
|
[74] |
Li X H, Deng S D, Du G B, et al. Synergistic inhibition effect of walnut green husk extract and sodium lignosulfonate on the corrosion of cold rolled steel in phosphoric acid solution [J]. J. Taiwan Inst. Chem. Eng., 2020, 114: 263
|
[75] |
Loto C A, Fayomi O S I, Loto R T. Electrochemical corrosion resistance and inhibition behaviour of martensitic stainless steel in hydrochloric acid [J]. Der Pharma Chem., 2015, 7: 102
|
[76] |
Hernandez A C, Vazquez-Velez E, Uruchurtu-Chavarin J, et al. Use of an imidazol synthetized from palm oil as a corrosion inhibitor for a supermartensitic stainless steel in H2S [J]. Green. Chem. Lett. Rev., 2019, 12: 89
|
[77] |
Raji S A, Popoola A P I, Akanji O L. Corrosion inhibition of martensitic stainless steel by sodium benzoate in acidic medium: Solanum tuberosum extract as surfactant [J]. J. Mol. Struct., 2024, 1312: 138414
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|