Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 1127-1134     CSTR: 32134.14.1005.4537.2024.223      DOI: 10.11902/1005.4537.2024.223
  研究报告 本期目录 | 过刊浏览 |
激光重熔对生物可降解Zn-0.4Mn合金微观结构和性能的影响
岳锐1,2, 刘咏咏1, 杨丽景2(), 朱兴隆2, 陈权昕2, 阿那尔2, 张青科2, 宋振纶2
1 宁波大学材料科学与化学工程学院 宁波 315211
2 中国科学院宁波材料技术与工程研究所海洋关键材料全国重点实验室 宁波 315201
Effect of Laser Surface Remelting on Microstructure and Properties of Biodegradable Zn-0.4Mn Alloy
YUE Rui1,2, LIU Yongyong1, YANG Lijing2(), ZHU Xinglong2, CHEN Quanxin2, A Naer2, ZHANG Qingke2, SONG Zhenlun2
1 School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
2 State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
引用本文:

岳锐, 刘咏咏, 杨丽景, 朱兴隆, 陈权昕, 阿那尔, 张青科, 宋振纶. 激光重熔对生物可降解Zn-0.4Mn合金微观结构和性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1127-1134.
Rui YUE, Yongyong LIU, Lijing YANG, Xinglong ZHU, Quanxin CHEN, Naer A, Qingke ZHANG, Zhenlun SONG. Effect of Laser Surface Remelting on Microstructure and Properties of Biodegradable Zn-0.4Mn Alloy[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1127-1134.

全文: PDF(13101 KB)   HTML
摘要: 

锌合金因其较低的腐蚀速率和良好的生物相容性,被认为是潜在的医用可降解金属材料。针对Zn-0.4Mn合金延伸率较好但表面硬度和耐磨性较低以及细胞相容性较差的问题,本研究在合金表面利用激光重熔技术在合金表面进行改性,并对激光重熔后合金的微观结构、显微硬度、耐磨性、耐腐蚀性和细胞相容性进行分析探讨。结果表明,重熔后的Zn-0.4Mn合金表面硬度和耐磨性显著提高;腐蚀电流密度降低以及阻抗的增大,表明了激光重熔提高了Zn-0.4Mn合金的耐腐蚀性;L929细胞毒性实验结果说明锌合金的生物相容性有所提升,这是由于重熔后合金耐蚀性增加,减少了锌离子的溶出。因此,激光重熔是提升锌合金力学性能、降解性能和生物安全性的一种有效手段。

关键词 锌合金激光重熔显微硬度耐磨性耐腐蚀性    
Abstract

Zn-alloys are regarded as promising biodegradable metallic materials due to their low corrosion rates and favorable cytocompatibility. To address the challenges associated with the Zn-0.4Mn alloy, which exhibits better ductility but lower surface hardness, wear resistance, and cytocompatibility etc., herein, the effect of surface laser remelting on the microstructure, microhardness, wear resistance, corrosion resistance, and cytocompatibility of the Zn-0.4Mn alloy was assessed. The findings revealed that the surface hardness and wear resistance of the remelted Zn-0.4Mn alloy were significantly enhanced. Furthermore, a reduction in corrosion current density and an increase in impedance indicated that laser remelting improved the corrosion resistance of the Zn-0.4Mn alloy. Additionally, L929 cytotoxicity tests demonstrated that the biocompatibility of the Zn-alloy was enhanced due to improved corrosion resistance and reduced leaching of Zn ions. Consequently, laser remelting emerges as an effective method for improving the mechanical properties, degradation characteristics, and biosafety of Zn-alloys.

Key wordsZn-alloy    laser surface remelting    microhardness    abrasion resistance    corrosion resistance
收稿日期: 2024-07-26      32134.14.1005.4537.2024.223
ZTFLH:  TG174.4  
基金资助:“尖兵领雁+X”研发攻关计划项目(2024C03078);宁波市国际科技合作项目(2023H022);宁波市青年科技创新领军人才项目(2023QL014)
通讯作者: 杨丽景,E-mail:yanglj@nimte.ac.cn,研究方向为金属材料腐蚀与防护
Corresponding author: YANG Lijing, E-mail: yanglj@nimte.ac.cn
作者简介: 岳 锐,男,1999年生,硕士生
图1  纳米压痕测试示意图
CompositionConcentration
Na+142 mmol/L
K+5.0 mmol/L
Ca2+2.5 mmol/L
Mg2+1.5 mmol/L
HCO3-4.2 mmol/L
Cl-147 mmol/L
HPO42-1 mmol/L
SO42-0.5 mmol/L
Tris6.069 g/L
表1  SBF溶液的离子浓度[23]
图2  LSR处理的Zn-0.4Mn合金的表面和横截面形貌
图3  Zn-0.4Mn合金和LSR处理的Zn-0.4Mn合金的XRD谱
图4  LSR处理的Zn-0.4Mn合金在载荷为5 μN和持续时间为10 s的条件下的载荷-深度曲线和硬度分布曲线
图5  在2 N的载荷和2 Hz的频率下对样品进行1800 s的摩擦和磨损测试的摩擦系数变化曲线和磨损深度曲线
SampleFriction coefficientDepth of wear / μm
Zn-0.4Mn alloy0.42107.99
LSR-treated Zn-0.4Mn alloy0.3010.04
表2  摩擦系数和磨损深度
图6  在SBF中浸泡不同天数的试样的腐蚀形貌
图7  试样在SBF溶液中浸泡30 min后的极化曲线和EIS
SampleIcorr / μA·cm-2Ecorr / VRp / kΩ·cm2CR / mm·a-1
Zn-0.4Mn alloy23.74-1.120.770.28
LSR-treated Zn-0.4Mn alloy16.52-1.120.280.19
表3  在SBF溶液的PDP测试结果
SampleRs / Ω·cm2Qcpf-Yo / Ω·cm-2·S-nQcpf-nRcpf / Ω·cm2Qct-Yo / Ω·cm-2·S-nQdl-nRct / Ω·cm2
Zn-0.4Mn alloy16.33.49 × 10-60.93202.91.60 × 10-60.991109
LSR-treated Zn-0.4Mn alloy13.42.10 × 10-40.56607.82.58 × 10-30.66767
表4  在SBF溶液中的EIS拟合结果
图8  L-929细胞在25%浓度提取物的不同试样中培养24和72 h后的生长形态
SampleZn / mg·L-1Mn / mg·L-1Ca / mg·L-1P / mg·L-1
Culture medium0.02< 0.0133.8861.97
Zn-0.4Mn alloy5.810.0133.3964.79
LSR-treated Zn-0.4Mn alloy8.390.0336.9663.67
表5  ICP-OES对浸提液中元素的测定结果
[1] Soetan K O, Olaiya C O, Oyewole O E. The importance of mineral elements for humans, domestic animals and plants: A review [J]. Afr. J. Food Sci., 2010, 4: 200
[2] Zhu D H, Cockerill I, Su Y C, et al. Mechanical strength, biodegradation, and in vitro and in vivo biocompatibility of Zn biomaterials [J]. ACS Appl. Mater. Interfaces, 2019, 11: 6809
[3] Yang Y W, Zan J, Yang W J, et al. Metal organic frameworks as a compatible reinforcement in a biopolymer bone scaffold [J]. Mater. Chem. Front., 2020, 4: 973
[4] Qu X H, Yang H T, Jia B, et al. Biodegradable Zn-Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation [J]. Acta Biomater., 2020, 117: 400
doi: 10.1016/j.actbio.2020.09.041 pmid: 33007485
[5] Bowen P K, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents [J]. Adv. Mater., 2013, 25: 2577
[6] Mostaed E, Sikora-Jasinska M, Drelich J W, et al. Zinc-based alloys for degradable vascular stent applications [J]. Acta Biomater., 2018, 71: 1
doi: S1742-7061(18)30125-9 pmid: 29530821
[7] Gong H B, Wang K, Strich R, et al. In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy [J]. J. Biomed. Mater. Res. Part B, 2015, 103: 1632
[8] Dayaghi E, Bakhsheshi-Rad H R, Hamzah E, et al. Magnesium-zinc scaffold loaded with tetracycline for tissue engineering application: In vitro cell biology and antibacterial activity assessment [J]. Mater. Sci. Eng. C, 2019, 102: 53
[9] Bakhsheshi-Rad H B, Hamzah E, Kasiri-Asgarani M, et al. Deposition of nanostructured fluorine-doped hydroxyapatite-polycaprolactone duplex coating to enhance the mechanical properties and corrosion resistance of Mg alloy for biomedical applications [J]. Mater. Sci. Eng. C, 2016, 60: 526
[10] Shi Z Z, Yu J, Liu X F. Microalloyed Zn-Mn alloys: from extremely brittle to extraordinarily ductile at room temperature [J]. Mater. Des., 2018, 144: 343
[11] Guo P S, Li F X, Yang L J, et al. Ultra-fine-grained Zn-0.5Mn alloy processed by multi-pass hot extrusion: grain refinement mechanism and room-temperature superplasticity [J]. Mater. Sci. Eng. A, 2019, 748: 262
[12] Sun S N, Ren Y P, Wang L Q, et al. Abnormal effect of Mn addition on the mechanical properties of as-extruded Zn alloys [J]. Mater. Sci. Eng. A, 2017, 701: 129
[13] Wu G S, Ibrahim J M, Chu P K. Surface design of biodegradable magnesium alloys-A review [J]. Surf. Coat. Technol., 2013, 233: 2
[14] Osório R W, Cheung N, Spinelli J E, et al. Microstructural modification by laser surface remelting and its effect on the corrosion resistance of an Al-9wt%Si casting alloy [J]. Appl. Surf. Sci., 2008, 254: 2763
[15] Dutta Majumdar J, Galun R, Mordike B L, et al. Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy [J]. Mater. Sci. Eng. A, 2003, 361: 119
[16] Guan Y C, Zhou W, Zheng H Y. Effect of laser surface melting on corrosion behaviour of AZ91D Mg alloy in simulated-modified body fluid [J]. J. Appl. Electrochem., 2009, 39: 1457
[17] Ho Y H, Vora H D, Dahotre N B. Laser surface modification of AZ31B Mg alloy for bio-wettability [J]. J. Biomater. Appl., 2015, 29: 915
[18] Wu T C, Ho Y H, Joshi S S, et al. Microstructure and corrosion behavior of laser surface-treated AZ31B Mg bio-implant material [J]. Lasers. Med. Sci., 2017, 32: 797
[19] Wang Z, Zhang Q K, Guo P S, et al. Effects of laser surface remelting on microstructure and properties of biodegradable Zn-Zr alloy [J]. Mater. Lett., 2018, 226: 52
[20] Mostaed E, Sikora-Jasinska M, Mostaed A, et al. Novel Zn-based alloys for biodegradable stent applications: design, development and in vitro degradation [J]. J. Mech. Behav. Biomed. Mater., 2016, 60: 581
doi: S1751-6161(16)30038-8 pmid: 27062241
[21] Ding F, Zhu X L, Guo P S, et al. Softening and structural instability mechanism of biodegradable Zn-0.45Mn alloy at different heat treatment temperatures [J]. Mater. Today Commun., 2022, 33: 104768
[22] Guo P S, Zhu X L, Yang L J, et al. Ultrafine- and uniform-grained biodegradable Zn-0.5Mn alloy: Grain refinement mechanism, corrosion behavior, and biocompatibility in vivo [J]. Mater. Sci. Eng. C, 2021, 118: 111391
[23] Xin Y, Hu T, Chu P K. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review [J]. Acta Biomater., 2011, 7: 1452
doi: 10.1016/j.actbio.2010.12.004 pmid: 21145436
[24] Raghavan N, Simunovic S, Dehoff R, et al. Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing [J]. Acta Mater., 2017, 140: 375
[25] Acharya R, Sharon J A, Staroselsky A. Prediction of microstructure in laser powder bed fusion process [J]. Acta Mater., 2017, 124: 360
[26] Qu J, Cooley K M, Shaw A H, et al. Assessment of wear coefficients of nuclear zirconium claddings without and with pre-oxidation [J]. Wear, 2016, 356-357: 17
[27] Guillory II R J, Oliver A A, Davis E K, et al. Preclinical in vivo evaluation and screening of zinc-based degradable metals for endovascular stents [J]. JOM, 2019, 71: 1436
doi: 10.1007/s11837-019-03371-5
[28] Jiang J M, Qian Y, Huang H, et al. Biodegradable Zn-Cu-Mn alloy with suitable mechanical performance and in vitro degradation behavior as a promising candidate for vascular stents [J]. Biomater. Adv., 2022, 133: 112652
[29] Andrade C, Garcés P, Martínez I. Galvanic currents and corrosion rates of reinforcements measured in cells simulating different pitting areas caused by chloride attack in sodium hydroxide [J]. Corros. Sci., 2008, 50: 2959
[1] 郑子龙, 孙海静, 薛伟海, 陈国亮, 周欣, 王进军, 段德莉, 孙杰. 聚四氟乙烯对风电叶片聚氨酯涂层耐磨与耐雨蚀性能影响及损伤机制研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 881-893.
[2] 冉仁豪, 单慧琳, 张鹏杰, 汪冬梅, 斯佳佳, 徐光青, 吕珺. 表层镁合金化NdFeB磁体的制备及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2025, 45(4): 1117-1126.
[3] 李茂, 邓轲, 陈衍祥, 刘中豪, 李尚, 郭宇婷, 董选普, 曹华堂. N2 流量和靶基距对多弧离子镀沉积AlSiN纳米复合涂层的微观组织及耐腐蚀性能影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1041-1050.
[4] 李祥东, 刘昌昊, 张弛, 陈文娟, 崔宸悦, 朱勇文, 王姝舒. WC-Zn复合镀层的工艺设计及其性能研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 795-802.
[5] 赵立佳, 崔新宇, 王吉强, 熊天英. 冷喷涂B4C/Al复合涂层在硼酸溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 164-172.
[6] 林一, 刘涛, 郭彦兵, 阮晴, 郭章伟, 董丽华. 船用低温钢焊接材料的研发与腐蚀方法评价[J]. 中国腐蚀与防护学报, 2024, 44(4): 957-964.
[7] 马晓伟, 薛荣洁, 王涛涛, 杨亮, 刘珍光. 锆基非晶合金与传统合金在海水中的耐腐蚀性能对比研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 949-956.
[8] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[9] 刘浩, 郭晓开, 王维, 伍廉奎, 曹发和, 孙擎擎. 超声喷丸对7075铝合金棒材组织结构与性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[10] 胡倩, 高佳仪, 郭瑞生, 史俊勤, 王显宗. 微纳结构对阳极氧化铝超滑表面长期耐蚀性的影响机制研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 773-780.
[11] 肖檬, 王勤英, 张兴寿, 西宇辰, 白树林, 董立谨, 张进, 杨俊杰. 激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[12] 丁立, 邹文杰, 张雪姣, 陈均. ADC12铝合金表面硅锆复合转化膜的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[13] 张而耕, 杨磊, 杨虎, 梁丹丹, 陈强, 周琼, 黄彪. 热喷涂Fe基非晶涂层的耐腐蚀性的研究及优化[J]. 中国腐蚀与防护学报, 2023, 43(2): 399-407.
[14] 胡雄鑫, 张弦, 刘静, 吴开明, 林安. 无取向电工钢用磷酸盐系绝缘环保涂层的研制及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 805-812.
[15] 张媛, 张弦, 陈思雨, 李腾, 刘静, 吴开明. 磷酸浓度对316L不锈钢耐蚀性及钝化膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 819-825.