激光重熔对生物可降解Zn-0.4Mn合金微观结构和性能的影响
Effect of Laser Surface Remelting on Microstructure and Properties of Biodegradable Zn-0.4Mn Alloy
通讯作者: 杨丽景,E-mail:yanglj@nimte.ac.cn,研究方向为金属材料腐蚀与防护
收稿日期: 2024-07-26 修回日期: 2024-11-07
基金资助: |
|
Corresponding authors: YANG Lijing, E-mail:yanglj@nimte.ac.cn
Received: 2024-07-26 Revised: 2024-11-07
Fund supported: |
|
作者简介 About authors
岳锐,男,1999年生,硕士生
锌合金因其较低的腐蚀速率和良好的生物相容性,被认为是潜在的医用可降解金属材料。针对Zn-0.4Mn合金延伸率较好但表面硬度和耐磨性较低以及细胞相容性较差的问题,本研究在合金表面利用激光重熔技术在合金表面进行改性,并对激光重熔后合金的微观结构、显微硬度、耐磨性、耐腐蚀性和细胞相容性进行分析探讨。结果表明,重熔后的Zn-0.4Mn合金表面硬度和耐磨性显著提高;腐蚀电流密度降低以及阻抗的增大,表明了激光重熔提高了Zn-0.4Mn合金的耐腐蚀性;L929细胞毒性实验结果说明锌合金的生物相容性有所提升,这是由于重熔后合金耐蚀性增加,减少了锌离子的溶出。因此,激光重熔是提升锌合金力学性能、降解性能和生物安全性的一种有效手段。
关键词:
Zn-alloys are regarded as promising biodegradable metallic materials due to their low corrosion rates and favorable cytocompatibility. To address the challenges associated with the Zn-0.4Mn alloy, which exhibits better ductility but lower surface hardness, wear resistance, and cytocompatibility etc., herein, the effect of surface laser remelting on the microstructure, microhardness, wear resistance, corrosion resistance, and cytocompatibility of the Zn-0.4Mn alloy was assessed. The findings revealed that the surface hardness and wear resistance of the remelted Zn-0.4Mn alloy were significantly enhanced. Furthermore, a reduction in corrosion current density and an increase in impedance indicated that laser remelting improved the corrosion resistance of the Zn-0.4Mn alloy. Additionally, L929 cytotoxicity tests demonstrated that the biocompatibility of the Zn-alloy was enhanced due to improved corrosion resistance and reduced leaching of Zn ions. Consequently, laser remelting emerges as an effective method for improving the mechanical properties, degradation characteristics, and biosafety of Zn-alloys.
Keywords:
本文引用格式
岳锐, 刘咏咏, 杨丽景, 朱兴隆, 陈权昕, 阿那尔, 张青科, 宋振纶.
YUE Rui, LIU Yongyong, YANG Lijing, ZHU Xinglong, CHEN Quanxin, A Naer, ZHANG Qingke, SONG Zhenlun.
Zn是许多生物体新陈代谢和生长所必需的微量元素,在各种生理过程中发挥重要作用。Zn还是乳酸脱氢酶、乙醇脱氢酶、DNA和RNA等多种酶的重要辅助因子和组成成分[1~3],这使得锌合金成为生物可降解金属材料的优选[4]。目前,对于生物可降解金属的研究主要集中在铁基合金、镁基合金和锌基合金3类。相较于镁基合金和铁基合金,锌合金的降解速率介于二者之间,且不出现气胀等影响组织愈合的现象。因此,锌合金越来越受到关注,成为研究热点[5~9]。理想的生物可降解植入物必须在一段时间内提供临时的机械支持,并在任务完成后完全降解。在不同应用条件下,对锌合金的力学性能和降解速率有不同的要求。然而,纯锌的力学性能较差,无法满足植入物材料的基本要求,因此通常使用合金化来提升锌的力学性能。根据之前的研究,Mn含量小于1% (质量分数)的二元Zn-Mn合金在室温下表现出优异的延展性[10~12],尤其是具有超细晶的Zn-0.4Mn合金,其延伸率可达245.0% ± 9.0%,实现了室温超塑性。相较于纯锌,Zn-Mn合金具有良好的综合力学性能,但其表面硬度仍需进一步提升。尽管合金化可以有效改善锌合金力学性能差的问题,但多数锌合金在体外的细胞相容性差的问题依然存在,其中锌离子浓度过高是影响结果的主要因素。针对锌合金的力学性能和细胞相容性差无法满足医用植入材料要求的问题,表面改性是一种有效的解决手段。常用的表面改性方法包括阳极氧化、碱性浸泡、微弧氧化、氟化物处理、仿生矿化聚合物涂层、磷酸钙涂层、羟基磷灰石(HA)涂层和激光表面重熔(LSR)等[13]。激光表面重熔可以细化表面晶粒,均匀合金元素分布,并提高合金元素的溶解度,同时不会对基底产生明显影响[14]。通过LSR,可以有效提高合金表面的机械强度及粗糙度,提高细胞粘附率,扩大与组织的接触面积;此外,LSR的操作灵活,耗时少,已被用于改善可生物降解镁合金的耐腐蚀性和润湿性[15~18],是调控表面微观结构和性能以满足植入物需求的最合适手段之一。目前,关于在锌合金上使用此技术的研究仍然较少。Wang等[19]的研究表明,由于Zn的蒸气压很高,在LSR过程中Zn通常会蒸发,从而影响最终的效果。另外,熔融锌在氩气中的反应活性较低[20]。因此,本研究采用了较低的热输入和氩气屏蔽,以尽量减少激光对锌合金的损害。
1 实验方法
本研究使用Zn-0.4Mn合金,通过多道次不同轧制比将材料轧制成为4 mm厚度的板材,然后切割成8 mm × 8 mm小块。再经过机械研磨、抛光和乙醇清洗后再进行激光处理。经过LSR处理后,样品表面进一步用抛光布抛光30 s,以去除激光重熔过程中产生的氧化物和杂质。本研究采用波长为1064 nm,最大功率为600 W的脉冲Nd:YAG激光器(JHM-1GY600D)。激光重熔参数如下:起止电流30 A,扫描速率200 mm/min,频率10 Hz,脉宽2 ms,光斑直径0.8 mm,Ar气流量20 L/min。
将上述得到的样品使用稀盐酸(0.1 mol/L)清洗,然后使用抛光布将其表面打磨约15 s去除表面在LSR过程产生的杂质。用400#、800#、1200#和2000#的砂纸依次打磨原始样品和处理过的样品的横截面,使用抛光布抛光至镜面,使用铬酸(200 g/L)腐蚀20 s,用去离子水冲洗并自然干燥。使用配备能量色散光谱仪的场扫描电子显微镜(SEM,FEI Quanta250)分析材料表面和横截面的微观结构。然后使用D8 ADVANCE DAVINCI X射线粉末衍射仪(XRD,BRUKER)对样品进行物相分析,XRD衍射角度范围为10°~90°,扫描速率为4 (°)/min。使用原位纳米压头(G200)测试抛光样品截面的显微硬度,施加5 μN的载荷,下压速率为10 nm/s,峰值保持时间为10 s。每个测试点等距排列,第一个测试点距离样品表面约40 μm,每个测试点之间的间距为50 μm。测试示意图如图1所示。测试点从左到右排列,1为样品重熔区,6为基底。使用Ampadon多功能高温摩擦磨损试验机进行摩擦磨损实验,实验方式为直线高速往复干摩擦,接触力设定为1.5 N,频率设定为1.5 Hz,摩擦时间设定为1800 s。摩擦实验后,使用表面轮廓仪测量试样的摩擦深度。
图1
使用Auto Lab (PGSTAT 302)电化学工作站对样品进行动电位极化曲线(PDP)和电化学阻抗谱(EIS)测试。采用三电极体系,样品为工作电极,铂片为对电极,饱和甘汞电极为参比电极,测试面积为8 mm × 8 mm,其余面积通过环氧树脂包裹,测试溶液为模拟体液(c-SBF,溶液pH值为7.30~7.40,成分如表1所示),测试温度为室温。工作电极分别为未处理的原始样品和激光重熔后的表面。实验之前,先将样品在SBF中保持30 min,使其达到稳定状态降低误差。
Composition | Concentration |
---|---|
Na+ | 142 mmol/L |
K+ | 5.0 mmol/L |
Ca2+ | 2.5 mmol/L |
Mg2+ | 1.5 mmol/L |
HCO | 4.2 mmol/L |
Cl- | 147 mmol/L |
HPO | 1 mmol/L |
SO | 0.5 mmol/L |
Tris | 6.069 g/L |
根据ASTMG31-72标准进行腐蚀浸泡实验,每种实验材料至少制备5个平行样品,原始样品打磨抛光至无明显划痕,与激光重熔过的样品一起用无水乙醇超声清洁,使用环氧树脂将样品包裹后按照一定的表面积、腐蚀溶液c-SBF体积比放置在37 ℃恒温箱内,分别浸泡3、7和15 d。试样在不同浸泡时间后取出,使用SEM对腐蚀形貌进行观察和分析。
L-929成纤维细胞用于对样品进行24和72 h的四甲基偶氮唑盐(MTT法)细胞毒性实验。细胞培养基由DMEM (含双抗)和胎牛血清组成。细胞附着到表面后,每24 h更换一次培养基,以监测细胞生长。浸提液的制备遵循ISO 10993-5:2009指南。将样本烘干,用紫外线消毒24 h,然后以2∶3的比例(样本表面积与培养液体积)浸泡在培养液中,在37 ℃的CO2培养箱中浸泡72 h,以达到100%浸泡。细胞培养基和浸泡液混合成25%的浸提液,用于将细胞转移到96孔板中进一步培养。观察细胞附着到表面后,更换浸泡培养液。培养24和72 h后,用4%多聚甲醛固定细胞,并分别用异硫氰酸荧光素(Fluorescein isothiocyanate isomer)和4′,6-二脒基-2-苯基吲哚(4′,6-diamidino-2-phenylindle)对细胞骨架和细胞核进行染色。使用倒置荧光显微镜(Nikon,Ti2-U)监测细胞生长。
2 结果与讨论
2.1 LSR对Zn-0.4Mn合金表面形貌的影响
图2
图2
LSR处理的Zn-0.4Mn合金的表面和横截面形貌
Fig.2
Surface (a) and cross sectional (b) morphologies of the LSR-treated Zn-0.4Mn alloy
图3显示了原始样品和经LSR处理的Zn-0.4Mn合金的XRD谱。原始样品的XRD谱显示出较强的Zn峰和较弱的MnZn13峰,经LSR处理的Zn-0.4Mn合金显示出衍射强度更均匀的Zn峰,未显示出明显的MnZn13峰,这表明经过LSR处理后大多数的MnZn13相固溶进了Zn基体中。
图3
图3
Zn-0.4Mn合金和LSR处理的Zn-0.4Mn合金的XRD谱
Fig.3
XRD patterns of the Zn-0.4Mn alloy and LSR-treated Zn-0.4Mn alloy
2.2 LSR对Zn-0.4Mn合金硬度的影响
2.2.1 显微硬度
图4
图4
LSR处理的Zn-0.4Mn合金在载荷为5 μN和持续时间为10 s的条件下的载荷-深度曲线和硬度分布曲线
Fig.4
Load-depth curve (a) and brinell hardness distribution curve (b) of LSR-treated Zn-0.4Mn alloy at a load of 5 μN and a duration of 10 s
2.2.2 摩擦磨损
图5a为1800 s内Zn-0.4Mn合金和LSR处理后的Zn-0.4Mn合金摩擦系数的变化曲线,图5b和c为样品摩擦后的深度分布曲线,表2显示了1800 s后样品的摩擦系数和磨损深度。从图5a可以看出,经LSR处理后样品摩擦系数减小,在相同应力下的摩擦损失减小。Zn-0.4Mn合金的曲线可分为两个阶段:在Ⅰ阶段,摩擦系数随滑动行程呈波动上升趋势;进入Ⅱ阶段后,摩擦系数波动很小,稳定在平均值0.42附近。而经LSR处理的Zn-0.4Mn合金的摩擦系数稳定在平均值0.30附近。从图5b和c中可以看出,在相同的摩擦条件下,激光重熔前后的样品磨损深度差距较大,原始样品的磨损深度为107.99 μm,经LSR处理的Zn-0.4Mn合金磨损深度为10.04 μm,小于重熔层的厚度,所以经LSR处理的Zn-0.4Mn合金的摩擦系数比较稳定。一般而言,金属的硬度越高,其抵抗塑性变形的能力也会越强,耐磨性也越好[26]。实验结果表明,LSR可以降低Zn-0.4Mn合金的摩擦系数,减少摩擦损耗,提高耐磨性。
图5
图5
在2 N的载荷和2 Hz的频率下对样品进行1800 s的摩擦和磨损测试的摩擦系数变化曲线和磨损深度曲线
Fig.5
Samples were tested for friction and wear at a force of 2 N and a frequency of 2 Hz for 1800 s: (a) evolution of friction coefficient, (b) wear depth of the Zn-0.4Mn alloy, (c) wear depth of the LSR-treated Zn-0.4Mn alloy
表2 摩擦系数和磨损深度
Table 2
Sample | Friction coefficient | Depth of wear / μm |
---|---|---|
Zn-0.4Mn alloy | 0.42 | 107.99 |
LSR-treated Zn-0.4Mn alloy | 0.30 | 10.04 |
2.3 LSR对Zn-0.4Mn合金腐蚀性能的影响
图6a和b显示了原始样品在SBF中浸泡不同时间后的表面腐蚀形态。浸泡3 d后,表面出现了一些腐蚀产物。当浸泡时间延长到7 d时,腐蚀产物继续累积,并出现了明显的腐蚀坑。这是因为Zn-Mn合金中存在第二相MnZn13相,且MnZn13相的电位低于Zn基体,易在腐蚀过程中发生微电偶腐蚀,MnZn13相优先被腐蚀[27,28]。图6a3显示,在浸泡15 d后,由于腐蚀产物十分蓬松,所以在腐蚀产物堆积的时候产生剥落,形成了较大的腐蚀坑(图6b3)。图6c和d显示了经LSR处理的Zn-0.4Mn合金的表面腐蚀形貌。浸泡3 d后,腐蚀产物开始出现,腐蚀产物的分布与在原始样品上的分布相似(图6c1)。浸泡7 d后,腐蚀产物没有大量的聚集,样品表面的部分区域出现了较浅的腐蚀坑。浸泡15 d后,有更多的腐蚀坑出现,同时腐蚀坑略有加深。与原始样品相比LSR处理的表面腐蚀坑分布得更加均匀,样品趋向均匀腐蚀。
图6
图6
在SBF中浸泡不同天数的试样的腐蚀形貌
Fig.6
Corrosion morphologies of Zn-0.4Mn alloy (a, b) and LSR-treated Zn-0.4Mn alloy (c, d) with (a, c) and without (b, d) corrosion products after immersed in SBF for 3 d (a1-d1), 7 d (a2-d2) and 15 d (a3-d3)
图7
图7
试样在SBF溶液中浸泡30 min后的极化曲线和EIS
Fig.7
Polarization curves (a), Nyquist (b) and Bode plots (c) of specimens after immersion in SBF solution for 30 min
表3 在SBF溶液的PDP测试结果
Table 3
Sample | Icorr / μA·cm-2 | Ecorr / V | Rp / kΩ·cm2 | CR / mm·a-1 |
---|---|---|---|---|
Zn-0.4Mn alloy | 23.74 | -1.12 | 0.77 | 0.28 |
LSR-treated Zn-0.4Mn alloy | 16.52 | -1.12 | 0.28 | 0.19 |
图7b和c显示了原始样品和LSR处理样品的Nyquist图和Bode图。Nyquist图显示LSR前后样品均表现为两个容抗弧,高频容抗弧代表着电子转移过程,低频容抗弧代表着金属溶解过程中的物质转移过程,并且经过LSR处理的样品具有更大的容抗弧半径,说明经过LSR处理的样品的耐腐蚀性更好。Bode图中存在两个峰,这与Nyquist图和双时间常数的等效电路相匹配,在这个等效电路中,Rs是溶液电阻,Rcpf是腐蚀产物层电阻,Rct是样品与溶液之间的电荷转移电阻,Qcpf与Qdl相当于双电层电容。表4显示了EIS等效电路的拟合结果,经过LSR处理的样品的Rct (767 Ω·cm2)小于原始样品的Rct (1109 Ω·cm2),但经过LSR处理的样品的Rcpf (607.8 Ω·cm2)大于原始样品的Rcpf (202.9 Ω·cm2),而更高的Rcpf + Rct值表明具有更好的耐腐蚀性。实验结果表明,LSR可以提高Zn-0.4Mn合金的耐腐蚀性,这是由于经过LSR处理导致部分表面的MnZn13相固溶进了Zn基体中,使得与表面基体Zn相发生微电偶腐蚀的MnZn13相数量减少,从而提升了合金的耐蚀性。
表4 在SBF溶液中的EIS拟合结果
Table 4
Sample | Rs / Ω·cm2 | Qcpf-Yo / Ω·cm-2·S-n | Qcpf-n | Rcpf / Ω·cm2 | Qct-Yo / Ω·cm-2·S-n | Qdl-n | Rct / Ω·cm2 |
---|---|---|---|---|---|---|---|
Zn-0.4Mn alloy | 16.3 | 3.49 × 10-6 | 0.93 | 202.9 | 1.60 × 10-6 | 0.99 | 1109 |
LSR-treated Zn-0.4Mn alloy | 13.4 | 2.10 × 10-4 | 0.56 | 607.8 | 2.58 × 10-3 | 0.66 | 767 |
2.4 LSR对Zn-0.4Mn合金细胞相容性的影响
图8显示了Zn-0.4Mn合金和LSR处理过的Zn-0.4Mn合金25%浸提液中培养24和72 h后经由荧光染色得到的L-929细胞形态。表5列出了体积液和培养液中的元素含量。培养24 h后,各浸提液中细胞的生长情况与对照组无明显区别;培养72 h后,经过LSR处理的样品组的细胞生长情况明显优于Zn-0.4Mn合金组,这是由于LSR处理后,部分表面的MnZn13相固溶进了Zn基体中,从而减少了Zn-0.4Mn中的第二相MnZn13的析出,局部的Zn和MnZn13形成的电位差相较与未经处理的原始样品的电位差低[29],减少了锌离子的释放,促进了细胞生长,LSR对Zn-0.4Mn合金的细胞相容性有一定的提升。
图8
图8
L-929细胞在25%浓度提取物的不同试样中培养24和72 h后的生长形态
Fig.8
Growth morphologies of L-929 cells cultured for various times in Zn-0.4Mn alloy (a), LSR-treated Zn-0.4Mn alloy (b) and comparison group (c) with 25% concentration of extracts
表5 ICP-OES对浸提液中元素的测定结果
Table 5
Sample | Zn / mg·L-1 | Mn / mg·L-1 | Ca / mg·L-1 | P / mg·L-1 |
---|---|---|---|---|
Culture medium | 0.02 | < 0.01 | 33.88 | 61.97 |
Zn-0.4Mn alloy | 5.81 | 0.01 | 33.39 | 64.79 |
LSR-treated Zn-0.4Mn alloy | 8.39 | 0.03 | 36.96 | 63.67 |
3 结论
(1) LSR能有效提高Zn-0.4Mn合金的表面硬度和耐磨性,这归因于LSR促进了Mn原子固溶,而固溶的Mn原子造成的晶格畸变会增加位错滑移的阻力。
(2) LSR能有效提高Zn-0.4Mn合金的表面耐腐蚀性,归因于LSR使得会与基体Zn相发生微电偶腐蚀的MnZn13相数量减少。
(3) LSR处理的Zn-0.4Mn合金可改善其细胞相容性,归因于LSR处理的Zn-0.4Mn合金减少了Zn-0.4Mn中的第二相MnZn13的析出,降低了局部的Zn和MnZn13形成的电位差,减少了Zn的析出,从而提高细胞活性,降低对细胞的毒性。
参考文献
The importance of mineral elements for humans, domestic animals and plants: A review
[J].
Mechanical strength, biodegradation, and in vitro and in vivo biocompatibility of Zn biomaterials
[J].
Metal organic frameworks as a compatible reinforcement in a biopolymer bone scaffold
[J].
Biodegradable Zn-Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation
[J].Bone and joint-related infections remain the primary and most critical complications of orthopedic surgery. We have innovatively prepared Zn-Cu alloys to achieve outstanding material and antibacterial properties. In this study, we systematically assessed the material properties and antibacterial activity of these Zn-Cu alloys. Our results showed that the Zn-2Cu alloy had the best mechanical properties, biocompatibility, and osteogenic properties. Findings of microbial cultures, CLSM, SEM, and TEM indicated that Zn-2Cu alloy can inhibit both coagulase-positive and coagulase-negative staphylococci, as well as antibiotic-resistant strains (MRSA and MRSE), by preventing the bacteria adhesion and the biofilm formation. Zn-2Cu alloy could broadly affect the expression of MRSA genes associated with adhesion, autolysis, biofilm formation, virulence, and drug resistance. A rat femur intramedullary nail infection-prevention model was established and the Zn-2Cu alloy-treated group showed significant antibacterial activity against MRSA and reduced the inflammatory toxic side-effects and infection-related bone loss. Collectively, our results indicate the potential utility of Zn-Cu alloy implants with 2 wt% Cu in treating orthopedic infections. Statement of significance: Osteomyelitis is a serious complication of orthopedic surgeries. Wide use of antibiotics contributes to the appearance of multi-drug resistant strains like methicillin-resistant staphylococcus aureus (MRSA). Alternatively, anti-osteomyelitis implants with broad-spectrum antibacterial properties can be favorable. Here, the antibacterial performance of biodegradable Zn-Cu alloys was evaluated with four different bacteria strains including antibiotic-resistant strains (MRSA and MRSE). Zn-Cu alloys exert excellent bacterial killing capability in all strains. In a rat femur infection model, the alloy showed significant antibacterial activity against MRSA and reduced inflammatory toxic side-effects as well as infection-related bone loss. The antibacterial property of Zn-2Cu alloy was associated with inhibition of gene expression related to wall synthesis, adhesion, colonization, biofilm formation, autolysis, and secretion of virulence factors in MRSA.Copyright © 2020. Published by Elsevier Ltd.
Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents
[J].
Zinc-based alloys for degradable vascular stent applications
[J].The search for biodegradable metals with mechanical properties equal or higher to those of currently used permanent biomaterials, such as stainless steels, cobalt chromium and titanium alloys, desirable in vivo degradation rate and uniform corrosion is still an open challenge. Magnesium (Mg), iron (Fe) and zinc (Zn)-based alloys have been proposed as biodegradable metals for medical applications. Over the last two decades, extensive research has been done on Mg and Fe. Fe-based alloys show appropriate mechanical properties, but their degradation rate is an order of magnitude below the benchmark value. In comparison, alongside the insufficient mechanical performance of most of its alloys, Mg degradation rate has proven to be too high in a physiological environment and corrosion is rarely uniform. During the last few years, Zn alloys have been explored by the biomedical community as potential materials for bioabsorbable vascular stents due to their tolerable corrosion rates and tunable mechanical properties. This review summarizes recent progress made in developing Zn alloys for vascular stenting application. Novel Zn alloys are discussed regarding their microstructural characteristics, mechanical properties, corrosion behavior and in vivo performance.Numerous studies on magnesium and iron materials have been reported to date, in an effort to formulate bioabsorbable stents with tailorable mechanical characteristics and corrosion behavior. Crucial concerns regarding poor ductility and remarkably rapid corrosion of magnesium, and very slow degradation of iron, seem to be still not desirably fulfilled. Zinc was introduced as a potential implant material in 2013 due to its promising biodegradability and biocompatibility. Since then, extensive investigations have been made toward development of zinc alloys that meet clinical benchmarks for vascular scaffolding. This review critically surveys the zinc alloys developed since 2013 from metallurgical and biodegradation points of view. Microstructural features, mechanical, corrosion and in vivo performances of these new alloys are thoroughly reviewed and evaluated.Copyright © 2018 Acta Materialia Inc. All rights reserved.
In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy
[J].
Magnesium-zinc scaffold loaded with tetracycline for tissue engineering application: In vitro cell biology and antibacterial activity assessment
[J].
Deposition of nanostructured fluorine-doped hydroxyapatite-polycaprolactone duplex coating to enhance the mechanical properties and corrosion resistance of Mg alloy for biomedical applications
[J].
Microalloyed Zn-Mn alloys: from extremely brittle to extraordinarily ductile at room temperature
[J].
Ultra-fine-grained Zn-0.5Mn alloy processed by multi-pass hot extrusion: grain refinement mechanism and room-temperature superplasticity
[J].
Abnormal effect of Mn addition on the mechanical properties of as-extruded Zn alloys
[J].
Surface design of biodegradable magnesium alloys-A review
[J].
Microstructural modification by laser surface remelting and its effect on the corrosion resistance of an Al-9wt%Si casting alloy
[J].
Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy
[J].
Effect of laser surface melting on corrosion behaviour of AZ91D Mg alloy in simulated-modified body fluid
[J].
Laser surface modification of AZ31B Mg alloy for bio-wettability
[J].
Microstructure and corrosion behavior of laser surface-treated AZ31B Mg bio-implant material
[J].
Effects of laser surface remelting on microstructure and properties of biodegradable Zn-Zr alloy
[J].
Novel Zn-based alloys for biodegradable stent applications: design, development and in vitro degradation
[J].The search for a degradable metal simultaneously showing mechanical properties equal or higher to that of stainless steel and uniform degradation is still an open challenge. Several magnesium-based alloys have been studied, but their degradation rate has proved to be too fast and rarely homogeneous. Fe-based alloys show appropriate mechanical properties but very low degradation rate. In the present work, four novel Zn-Mg and two Zn-Al binary alloys were investigated as potential biodegradable materials for stent applications. The alloys were developed by casting process and homogenized at 350°C for 48h followed by hot extrusion at 250°C. Tube extrusion was performed at 300°C to produce tubes with outer/inner diameter of 4/1.5mm as precursors for biodegradable stents. Corrosion tests were performed using Hanks׳ modified solution. Extruded alloys exhibited slightly superior corrosion resistance and slower degradation rate than those of their cast counterparts, but all had corrosion rates roughly half that of a standard purity Mg control. Hot extrusion of Zn-Mg alloys shifted the corrosion regime from localized pitting to more uniform erosion, mainly due to the refinement of second phase particles. Zn-0.5Mg is the most promising material for stent applications with a good combination of strength, ductility, strain hardening exponent and an appropriate rate of loss of mechanical integrity during degradation. An EBSD analysis in the vicinity of the laser cut Zn-0.5Mg tube found no grain coarsening or texture modification confirming that, after laser cutting, the grain size and texture orientation of the final stent remains unchanged. This work shows the potential for Zn alloys to be considered for stent applications.Copyright © 2016 Elsevier Ltd. All rights reserved.
Softening and structural instability mechanism of biodegradable Zn-0.45Mn alloy at different heat treatment temperatures
[J].
Ultrafine- and uniform-grained biodegradable Zn-0.5Mn alloy: Grain refinement mechanism, corrosion behavior, and biocompatibility in vivo
[J].
In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review
[J].In spite of the immense potential of biodegradable magnesium alloys, the fast degradation rates of Mg-based biomedical implants in the physiological environment impose severe limitations in many clinical applications. Consequently, extensive in vitro studies have been carried out to investigate the materials' performance and fathom the associated mechanisms. Here, an up-to-date review of the in vitro studies on biomedical magnesium alloys in a simulated physiological environment is provided. This review focuses on four topics: (1) materials selection and in vitro biocompatibility of biomedical magnesium alloys; (2) in vitro degradation of biomedical magnesium alloys in simulated physiological environments, specifically discussing corrosion types, degradation rates, corrosion products and impact of the constituents in body fluids on materials degradation; (3) selection of suitable test media for in vitro assessment; and (4) future research trends.Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing
[J].
Prediction of microstructure in laser powder bed fusion process
[J].
Assessment of wear coefficients of nuclear zirconium claddings without and with pre-oxidation
[J].
Preclinical in vivo evaluation and screening of zinc-based degradable metals for endovascular stents
[J].Zinc alloy development and characterization for vascular stent application have been facilitated by many standardized and inexpensive methods. In contrast, overly simplistic in vitro approaches dominate the preliminary biological testing of materials. In 2012, our group introduced a metal wire implantation model in rats as a cost-effective and realistic approach to evaluate the biocompatibility of degradable materials in the vascular environment.In this work, we adapted metrics routinely used for evaluating stents to quantitatively characterize the long-term progression of the neointima that forms around zinc-based wire implants. Histological cross-sections were used to measure the length of neointimal protrusion from the wire into the lumen (denoted wire to lumen thickness), the base neointimal length (describing the breadth of neointimal activation), and the neointimal area. These metrics were used to provide in-depth characterization details for neointimal responses to Zn-Mg and Zn-Li alloys and may be used to compare different materials.
Biodegradable Zn-Cu-Mn alloy with suitable mechanical performance and in vitro degradation behavior as a promising candidate for vascular stents
[J].
Galvanic currents and corrosion rates of reinforcements measured in cells simulating different pitting areas caused by chloride attack in sodium hydroxide
[J].
/
〈 |
|
〉 |
