Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (3): 795-802     CSTR: 32134.14.1005.4537.2024.131      DOI: 10.11902/1005.4537.2024.131
  研究报告 本期目录 | 过刊浏览 |
WC-Zn复合镀层的工艺设计及其性能研究
李祥东, 刘昌昊, 张弛, 陈文娟(), 崔宸悦, 朱勇文, 王姝舒
合肥工业大学材料科学与工程学院 合肥 230009
Electrodeposition and Performance of WC-Zn Composite Coatings on Q235 Carbon Steel
LI Xiangdong, LIU Changhao, ZHANG Chi, CHEN Wenjuan(), CUI Chenyue, ZHU Yongwen, WANG Shushu
School of Materials Science and Engineering, Heifei University of Technology, Hefei 230009, China
引用本文:

李祥东, 刘昌昊, 张弛, 陈文娟, 崔宸悦, 朱勇文, 王姝舒. WC-Zn复合镀层的工艺设计及其性能研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 795-802.
Xiangdong LI, Changhao LIU, Chi ZHANG, Wenjuan CHEN, Chenyue CUI, Yongwen ZHU, Shushu WANG. Electrodeposition and Performance of WC-Zn Composite Coatings on Q235 Carbon Steel[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 795-802.

全文: PDF(10307 KB)   HTML
摘要: 

通过改变电极位置及温度优化电镀工艺在Q235钢表面进行了WC-Zn复合电镀,旨在提高钢铁基体的耐腐蚀性和力学性能。并利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、硬度测量以及电化学测试的手段分析了涂层表面的形貌、结构以及电化学特性。结果表明,与常规左右电镀相比,上下电镀的方法可以大幅提高复合镀层中WC微粒的含量,在提高电解液温度时,上下电镀方法形成的镀层中WC含量有明显升高。其中在温度为60 ℃时,镀层中WC含量高达43.2%,且镀层表面WC微粒分布均匀。此外,WC微粒的掺入提高了镀层的硬度,且随着WC-Zn复合镀层中WC含量的升高电极的自腐蚀电流密度逐渐降低。

关键词 WC-Zn复合涂层电镀电化学耐磨性    
Abstract

Electro-galvanizing is one of the most widely used methods in the field of corrosion prevention for steels, but during the service, the galvanized layer is prone to friction and wear. This article attempts to optimize the plating process by adjusting the electrode layout and bath temperature, thereby, novel WC-Zn composite coatings were then electrodeposited on the surface of Q235 steel, aiming in the improvement of the corrosion resistance and friction-wear property of the steel substrate. Meanwhile, the morphology, structure, and electrochemical characteristics of the acquired coatings were characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), hardness measurement, and electrochemical testing. The results showed that compared with conventional left and right electroplating, the up and down electroplating method can significantly increase the content of WC particles in the composite coating. When the increasing electrolyte temperature, the WC content in the coating formed by the up and down electroplating method is significantly increased. At 60 ℃, the WC content in the coating is as high as 43.2%, while the WC particles were uniformly distributed on the surface of the coating. In addition, the addition of WC particles improves the hardness of the coating, and the free-corrosion current density of the electrode of WC-Zn/Q235 steel gradually decreases with the increase of WC content in the WC-Zn composite coating.

Key wordsWC-Zn composite coating    electroplating    electrochemistry    wear resistance
收稿日期: 2024-04-22      32134.14.1005.4537.2024.131
ZTFLH:  TG171  
基金资助:大学生创新创业项目(S202310359317);安徽鼎旺环保材料有限公司项目(W2020JSKF0565)
通讯作者: 陈文娟,E-mail:wjchen314@hfut.edu.cn,研究方向为金属腐蚀与防护
Corresponding author: CHEN Wenjuan, E-mail: wjchen314@hfut.edu.cn
作者简介: 李祥东,男,2002年生,本科生
图1  阴阳两极采用左右、上下位置复合电镀示意图
图2  左右、上下电镀时WC-Zn电镀层的XRD谱
图3  60 ℃时上下、左右电镀形成的WC-Zn复合镀层的表面形貌及W分布
图4  60 ℃时上下、左右电镀形成的WC-Zn复合镀层的截面形貌
图5  60 ℃时上下、左右电镀形成的WC-Zn复合镀层腐蚀12 h的SEM图
图6  镀覆Zn和WC-Zn镀层的Q235钢经不同时间腐蚀后的阻抗模量和相位角
图7  镀覆Zn和WC-Zn镀层的Q235钢电极经不同时间腐蚀后的极化曲线
图8  不同腐蚀时间电极的腐蚀电流密度曲线
MaterialPosition 1Position 2Position 3Average value
Q235 steel150152152151
SXWC-Zn coating172170175172
ZYWC-Zn coating109113115112
Zn coating100102101101
表1  不同电镀方式下样品的布氏硬度
[1] Qin S J, Wang X, Cao B Z, et al. Research review on corrosion behavior of steel [J]. Nat. Sci. J. Hainan Univ., 2023, 41: 104
[1] 秦术杰, 王 欣, 曹宝珠 等. 钢材腐蚀行为的研究进展 [J]. 海南大学学报自然科学版, 2023, 41: 104
[2] Xie R Z, Geng R C, Qi Z, et al. Investigation of Q235 steel electrochemical corrosion behavior in naturally dried sandy soil [J]. Int. J. Electrochem. Sci., 2023, 18: 100376
[3] Zhang Y J. Corrosion mechanism and protection technology of steel structure [J]. Total Corros. Control, 2022, 36(3): 104
[3] 张英杰. 钢结构的腐蚀机理及防护工艺 [J]. 全面腐蚀控制, 2022, 36(3): 104
[4] Yang Y H, Liu F C. Application of construction technology of steel structure of building steel structure and its quality control measures [J]. Building. Technol. Dev., 2019, 46(18): 14
[4] 杨伊浩, 刘富成. 钢结构网架施工技术应用及质量控制措施 [J]. 建筑技术开发, 2019, 46(18): 14
[5] Rossi S, Pinamonti M, Calovi M. Influence of soil chemical characteristics on corrosion behaviour of galvanized steel [J]. Case Stud. Constr. Mater., 2022, 17: e01257
[6] Kavunga S, Luckeneder G, Schachinger E D, et al. In situ characterization of galvanized low-alloyed steels with high-temperature cyclic voltammetry during annealing [J]. Electrochim. Acta, 2022, 424: 140653
[7] Zhuo L C, Zhang Y H, Zhao Z, et al. Preparation and properties of ultrafine-grained W-Cu composites reinforced with tungsten fibers [J]. Mater. Lett., 2019, 243: 26
[8] Nayana K O, Ranganatha S, Shubha H N, et al. Effect of sodium lauryl sulphate on microstructure, corrosion resistance and microhardness of electrodeposition of Ni-Co3O4 composite coatings [J]. Trans. Nonferrous Met. Soc. China, 2019, 29: 2371
[9] Fu X Q, Duan S L, Lin J R, et al. Effects of CeO2 nano-rare earth particles doping on properties of Ni-Fe-Co-P alloy coatings [J]. Mater. Sci. Technol., 2020, 49: 2095
[9] 傅秀清, 段双陆, 林尽染 等. 纳米稀土CeO2掺杂对Ni-Fe-Co-P合金镀层性能的影响 [J]. 稀有金属材料与工程, 2020, 49: 2095
[10] Yu G W, Liu H, Wang J Y. Pattern selection and the magnetic property of electrodeposits grown within a ultrathin FeSO4 solution layer [J]. Rare Met. Mater. Eng., 2020, 49: 209
[10] 于光伟, 刘 宏, 王继扬. FeSO4水溶液超薄液层电沉积物的形貌选择及其磁性研究 [J]. 稀有金属材料与工程, 2020, 49: 209
[11] Yang B L, Li X W, Ruan Y, et al. Electrodeposition processing of porous Cu/Ni composites and their performance [J]. Rare Met. Mater. Eng., 2019, 48: 3215
[11] 杨碧莲, 李星吾, 阮 莹 等. 多孔Cu/Ni复合材料的电沉积法制备及其性能 [J]. 稀有金属材料与工程, 2019, 48: 3215
[12] Ye Z G, He Q Q, Liu L, et al. Effect of treatment temperature on the contact resistance of electro-depositionsilver-graphite composite coating [J]. Rare Met. Mater. Eng., 2017, 46: 3989
[12] 叶志国, 何庆庆, 刘 磊. 处理温度对电沉积银石墨复合镀层接触电阻的影响 [J]. 稀有金属材料与工程, 2017, 46: 3989
[13] Solovjev D S, Solovjeva I A, Konkina V V, et al. Improving the uniformity of the coating thickness distribution during electroplating treatment of products using multi anode baths [J]. Mater. Today Proc., 2019, 19: 1895
[14] Li J M, Xu S Q, Liang M Z. Research progress on the mechanism of composite electroplating [J]. Electroplat. Pollut. Control, 2016, 36(2): 1
[14] 李家明, 徐淑庆, 梁铭忠. 复合电镀机制的研究进展 [J]. 电镀与环保, 2016, 36(2): 1
[15] Zhang C L, Zhou Q, Wan W L, et al. Research status about composite electroplating of nickel-based alumina nanoparticles [J]. Plat. Finish., 2013, 35(4): 13
[15] 张春丽, 周 琦, 万文露 等. 镍基氧化铝纳米微粒复合电镀的研究现状 [J]. 电镀与精饰, 2013, 35(4): 13
[16] Alizadeh M, Safaei H. Characterization of Ni-Cu matrix, Al2O3 reinforced nano-composite coatings prepared by electrodeposition [J]. Appl. Surf. Sci., 2018, 456: 195
[17] Zhou J X, Zhao G C, Li J S, et al. Electroplating of non-fluorinated superhydrophobic Ni/WC/WS2 composite coatings with high abrasive resistance [J]. Appl. Surf. Sci., 2019, 487: 1329
[18] Liu Y F, Chen J, Yuan Y, et al. Effect of duty cycle on the corrosion resistance and hardness of Ni-WC Nano-composite coatings [J]. Electroplat. Pollut. Control, 2017, 37(2): 5
[18] 刘元福, 陈 吉, 袁 野 等. 占空比对Ni-WC纳米复合镀层耐蚀性及硬度的影响 [J]. 电镀与环保, 2017, 37(2): 5
[19] Kelly T G, Chen J G G. Metal overlayer on metal carbide substrate: unique bimetallic properties for catalysis and electrocatalysis [J]. Chem. Soc. Rev., 2012, 41: 8021
[20] Colton R J, Huang J T J, Wayne Rabalais J. Electronic structure of tungsten carbide and its catalytic behavior [J]. Chem. Phys. Lett., 1975, 34: 337
[21] Li B S, Zhang W W, Zhang W, et al. Preparation of Ni-W/SiC nanocomposite coatings by electrochemical deposition [J]. J. Alloy. Compd., 2017, 702: 38
[22] Tian L L, Xu J C. Electrodeposition and characterization of Ni-Y2O3 composite [J]. Appl. Surf. Sci., 2011, 257: 7615
[23] Chen W J, Fang L, Pan G. Corrosion evolution characteristics of Q235B steel in O3/SO2 composite atmosphere [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 450
[23] 陈文娟, 方 莲, 潘 刚. O3/SO2复合大气环境中Q235B钢的腐蚀演化特性 [J]. 中国腐蚀与防护学报, 2021, 41: 450
[1] 王亚东, 马荣耀, 万晔, 董俊华. 静水压力对吉帕级海工钢母材及焊材腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(3): 653-663.
[2] 王康, 姜建军, 杨丽景, 宋振纶. 烧结NdFeB表面HEDP-焦磷酸钾体系电镀铜工艺及性能研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 687-697.
[3] 郑文涛, 陆飞雪, 都凯, 王志惠, 贾海龙. 喷丸工艺对7075铝合金板材表面性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(3): 765-772.
[4] 李丽, 李善文, 史洪微, 梁国平, 李春霖, 孙禹, 秦晋, 王伟, 韩恩厚. 高速列车用铝合金环氧底漆的腐蚀行为和湿热老化机理研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 757-764.
[5] 杨震宇, 基超, 郭丽雅, 徐闰, 彭伟, 赵洪山, 韦习成, 董瀚. 6种典型商用纯铁和钢材在3.5%NaCl溶液中的初期腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(2): 469-478.
[6] 王慧玲, 明洪亮, 王俭秋, 韩恩厚. 掺氢天然气管线钢氢渗透行为研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 249-260.
[7] 赵杰, 徐广旭, 张烘玮, 李敬法, 吕冉, 王嘉龙, 闫东雷. X80掺氢天然气管道的氢脆与腐蚀耦合作用研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 407-415.
[8] 靳振廷, 宋亓宁, 刘琪, 彭春兰, 许楠, 陆其清, 包晔峰, 赵立娟, 赵建华. 铜合金在不同pH3.5%NaCl溶液中的浸泡腐蚀性能研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 506-514.
[9] 马宏宇, 刘叡, 崔宇, 柯培玲, 刘莉, 王福会. 静水压力对Cr/GLC叠层涂层腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(1): 103-114.
[10] 禹文娟, 王天丛, 赵东杨, 向雪云, 吴航, 王文. 封闭型耐蚀涂层的寿命预测模型研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1617-1624.
[11] 苏志诚, 张弦, 程焱, 刘静, 吴开明. 同成分的超细贝氏体钢和Q&P钢在海水中应力腐蚀开裂行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[12] 董征, 毛永祺, 孟洲, 陈向翔, 付传清, 陆晨涛. 应力作用下钢筋在模拟混凝土孔隙液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1547-1556.
[13] 陆添爱, 蒋文昊, 吴伟, 张俊喜. 基于接地材料功能需求的耐蚀铸铁表面改性研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1443-1453.
[14] 张雅妮, 王思敏, 樊冰. TC4钛合金在O2 + CO2 气氛的高温高压模拟水沉积液中表面形成的钝化膜研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[15] 谢文珍, 王震宇, 韩恩厚. 耐蚀钢筋在模拟混凝土孔隙液环境及海砂混凝土中钢筋在模拟海水环境中的钝化及腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(6): 1454-1464.